Numerical Methods for Fluid Dynamics

Numerical Methods for Fluid Dynamics
Title Numerical Methods for Fluid Dynamics PDF eBook
Author Dale R. Durran
Publisher Springer Science & Business Media
Pages 527
Release 2010-09-14
Genre Mathematics
ISBN 1441964126

Download Numerical Methods for Fluid Dynamics Book in PDF, Epub and Kindle

This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

Riemann Solvers and Numerical Methods for Fluid Dynamics

Riemann Solvers and Numerical Methods for Fluid Dynamics
Title Riemann Solvers and Numerical Methods for Fluid Dynamics PDF eBook
Author Eleuterio F. Toro
Publisher Springer Science & Business Media
Pages 635
Release 2013-04-17
Genre Technology & Engineering
ISBN 366203915X

Download Riemann Solvers and Numerical Methods for Fluid Dynamics Book in PDF, Epub and Kindle

High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.

Computational Methods for Fluid Dynamics

Computational Methods for Fluid Dynamics
Title Computational Methods for Fluid Dynamics PDF eBook
Author Joel H Ferziger
Publisher
Pages 380
Release 1996-02-14
Genre
ISBN 9783642976520

Download Computational Methods for Fluid Dynamics Book in PDF, Epub and Kindle

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics
Title Numerical Methods for Wave Equations in Geophysical Fluid Dynamics PDF eBook
Author Dale R. Durran
Publisher Springer Science & Business Media
Pages 476
Release 2013-03-14
Genre Mathematics
ISBN 1475730810

Download Numerical Methods for Wave Equations in Geophysical Fluid Dynamics Book in PDF, Epub and Kindle

Covering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.

Numerical Simulation in Fluid Dynamics

Numerical Simulation in Fluid Dynamics
Title Numerical Simulation in Fluid Dynamics PDF eBook
Author Michael Griebel
Publisher SIAM
Pages 222
Release 1998-01-01
Genre Mathematics
ISBN 0898713986

Download Numerical Simulation in Fluid Dynamics Book in PDF, Epub and Kindle

In this translation of the German edition, the authors provide insight into the numerical simulation of fluid flow. Using a simple numerical method as an expository example, the individual steps of scientific computing are presented: the derivation of the mathematical model; the discretization of the model equations; the development of algorithms; parallelization; and visualization of the computed data. In addition to the treatment of the basic equations for modeling laminar, transient flow of viscous, incompressible fluids - the Navier-Stokes equations - the authors look at the simulation of free surface flows; energy and chemical transport; and turbulence. Readers are enabled to write their own flow simulation program from scratch. The variety of applications is shown in several simulation results, including 92 black-and-white and 18 color illustrations. After reading this book, readers should be able to understand more enhanced algorithms of computational fluid dynamics and apply their new knowledge to other scientific fields.

Numerical Heat Transfer and Fluid Flow

Numerical Heat Transfer and Fluid Flow
Title Numerical Heat Transfer and Fluid Flow PDF eBook
Author Suhas Patankar
Publisher CRC Press
Pages 218
Release 2018-10-08
Genre Science
ISBN 1351991515

Download Numerical Heat Transfer and Fluid Flow Book in PDF, Epub and Kindle

This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.

Computational Methods for Fluid Flow

Computational Methods for Fluid Flow
Title Computational Methods for Fluid Flow PDF eBook
Author Roger Peyret
Publisher Springer Science & Business Media
Pages 364
Release 2012-12-06
Genre Science
ISBN 3642859526

Download Computational Methods for Fluid Flow Book in PDF, Epub and Kindle

In developing this book, we decided to emphasize applications and to provide methods for solving problems. As a result, we limited the mathematical devel opments and we tried as far as possible to get insight into the behavior of numerical methods by considering simple mathematical models. The text contains three sections. The first is intended to give the fundamen tals of most types of numerical approaches employed to solve fluid-mechanics problems. The topics of finite differences, finite elements, and spectral meth ods are included, as well as a number of special techniques. The second section is devoted to the solution of incompressible flows by the various numerical approaches. We have included solutions of laminar and turbulent-flow prob lems using finite difference, finite element, and spectral methods. The third section of the book is concerned with compressible flows. We divided this last section into inviscid and viscous flows and attempted to outline the methods for each area and give examples.