Numerical Methods for Nonlinear Variational Problems

Numerical Methods for Nonlinear Variational Problems
Title Numerical Methods for Nonlinear Variational Problems PDF eBook
Author Roland Glowinski
Publisher Springer Science & Business Media
Pages 506
Release 2013-06-29
Genre Science
ISBN 3662126133

Download Numerical Methods for Nonlinear Variational Problems Book in PDF, Epub and Kindle

This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem
Title Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem PDF eBook
Author Roland Glowinski
Publisher SIAM
Pages 473
Release 2015-11-04
Genre Mathematics
ISBN 1611973783

Download Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem Book in PDF, Epub and Kindle

Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.

Variational Methods For Strongly Indefinite Problems

Variational Methods For Strongly Indefinite Problems
Title Variational Methods For Strongly Indefinite Problems PDF eBook
Author Yanheng Ding
Publisher World Scientific
Pages 177
Release 2007-07-30
Genre Mathematics
ISBN 9814474509

Download Variational Methods For Strongly Indefinite Problems Book in PDF, Epub and Kindle

This unique book focuses on critical point theory for strongly indefinite functionals in order to deal with nonlinear variational problems in areas such as physics, mechanics and economics. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, the book presents for the first time a deformation theory in locally convex topological vector spaces. It also offers satisfying variational settings for homoclinic-type solutions to Hamiltonian systems, Schrödinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems. The concepts and methods used open up new topics worthy of in-depth exploration, and link the subject with other branches of mathematics, such as topology and geometry, providing a perspective for further studies in these areas. The analytical framework can be used to handle more infinite-dimensional Hamiltonian systems.

Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems

Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems
Title Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems PDF eBook
Author Ralf Kornhuber
Publisher
Pages 170
Release 1997
Genre Mathematics
ISBN

Download Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems Book in PDF, Epub and Kindle

Lagrange Multiplier Approach to Variational Problems and Applications

Lagrange Multiplier Approach to Variational Problems and Applications
Title Lagrange Multiplier Approach to Variational Problems and Applications PDF eBook
Author Kazufumi Ito
Publisher SIAM
Pages 354
Release 2008-11-06
Genre Mathematics
ISBN 0898716497

Download Lagrange Multiplier Approach to Variational Problems and Applications Book in PDF, Epub and Kindle

Analyses Lagrange multiplier theory and demonstrates its impact on the development of numerical algorithms for variational problems in function spaces.

Lectures on Numerical Methods for Non-Linear Variational Problems

Lectures on Numerical Methods for Non-Linear Variational Problems
Title Lectures on Numerical Methods for Non-Linear Variational Problems PDF eBook
Author R. Glowinski
Publisher Springer Science & Business Media
Pages 507
Release 2008-01-22
Genre Mathematics
ISBN 3540775064

Download Lectures on Numerical Methods for Non-Linear Variational Problems Book in PDF, Epub and Kindle

When Herb Keller suggested, more than two years ago, that we update our lectures held at the Tata Institute of Fundamental Research in 1977, and then have it published in the collection Springer Series in Computational Physics, we thought, at first, that it would be an easy task. Actually, we realized very quickly that it would be more complicated than what it seemed at first glance, for several reasons: 1. The first version of Numerical Methods for Nonlinear Variational Problems was, in fact, part of a set of monographs on numerical mat- matics published, in a short span of time, by the Tata Institute of Fun- mental Research in its well-known series Lectures on Mathematics and Physics; as might be expected, the first version systematically used the material of the above monographs, this being particularly true for Lectures on the Finite Element Method by P. G. Ciarlet and Lectures on Optimization—Theory and Algorithms by J. Cea. This second version had to be more self-contained. This necessity led to some minor additions in Chapters I-IV of the original version, and to the introduction of a chapter (namely, Chapter Y of this book) on relaxation methods, since these methods play an important role in various parts of this book.

Handbook of Variational Methods for Nonlinear Geometric Data

Handbook of Variational Methods for Nonlinear Geometric Data
Title Handbook of Variational Methods for Nonlinear Geometric Data PDF eBook
Author Philipp Grohs
Publisher Springer Nature
Pages 703
Release 2020-04-03
Genre Mathematics
ISBN 3030313514

Download Handbook of Variational Methods for Nonlinear Geometric Data Book in PDF, Epub and Kindle

This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.