Numerical Methods for Large Eigenvalue Problems
Title | Numerical Methods for Large Eigenvalue Problems PDF eBook |
Author | Yousef Saad |
Publisher | SIAM |
Pages | 292 |
Release | 2011-01-01 |
Genre | Mathematics |
ISBN | 9781611970739 |
This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.
Numerical Methods for General and Structured Eigenvalue Problems
Title | Numerical Methods for General and Structured Eigenvalue Problems PDF eBook |
Author | Daniel Kressner |
Publisher | Springer Science & Business Media |
Pages | 272 |
Release | 2006-01-20 |
Genre | Mathematics |
ISBN | 3540285024 |
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.
Numerical Methods for Eigenvalue Problems
Title | Numerical Methods for Eigenvalue Problems PDF eBook |
Author | Steffen Börm |
Publisher | Walter de Gruyter |
Pages | 216 |
Release | 2012-05-29 |
Genre | Mathematics |
ISBN | 3110250373 |
Eigenvalues and eigenvectors of matrices and linear operators play an important role when solving problems from structural mechanics and electrodynamics, e.g., by describing the resonance frequencies of systems, when investigating the long-term behavior of stochastic processes, e.g., by describing invariant probability measures, and as a tool for solving more general mathematical problems, e.g., by diagonalizing ordinary differential equations or systems from control theory. This textbook presents a number of the most important numerical methods for finding eigenvalues and eigenvectors of matrices. The authors discuss the central ideas underlying the different algorithms and introduce the theoretical concepts required to analyze their behavior with the goal to present an easily accessible introduction to the field, including rigorous proofs of all important results, but not a complete overview of the vast body of research. Several programming examples allow the reader to experience the behavior of the different algorithms first-hand. The book addresses students and lecturers of mathematics, physics and engineering who are interested in the fundamental ideas of modern numerical methods and want to learn how to apply and extend these ideas to solve new problems.
Finite Element Methods for Eigenvalue Problems
Title | Finite Element Methods for Eigenvalue Problems PDF eBook |
Author | Jiguang Sun |
Publisher | CRC Press |
Pages | 368 |
Release | 2016-08-19 |
Genre | Mathematics |
ISBN | 1482254654 |
This book covers finite element methods for several typical eigenvalues that arise from science and engineering. Both theory and implementation are covered in depth at the graduate level. The background for typical eigenvalue problems is included along with functional analysis tools, finite element discretization methods, convergence analysis, techniques for matrix evaluation problems, and computer implementation. The book also presents new methods, such as the discontinuous Galerkin method, and new problems, such as the transmission eigenvalue problem.
Eigenvalue Problems in Power Systems
Title | Eigenvalue Problems in Power Systems PDF eBook |
Author | Federico Milano |
Publisher | CRC Press |
Pages | 407 |
Release | 2020-12-22 |
Genre | Technology & Engineering |
ISBN | 1000335208 |
The book provides a comprehensive taxonomy of non-symmetrical eigenvalues problems as applied to power systems. The book bases all formulations on mathematical concept of “matrix pencils” (MPs) and considers both regular and singular MPs for the eigenvalue problems. Each eigenvalue problem is illustrated with a variety of examples based on electrical circuits and/or power system models and controllers and related data are provided in the appendices of the book. Numerical methods for the solution of all considered eigenvalue problems are discussed. The focus is on large scale problems and, hence, attention is dedicated to the performance and scalability of the methods. The target of the book are researchers and graduated students in Electrical & Computer Science Engineering, both taught and research Master programmes as well as PhD programmes and it: explains eigenvalue problems applied into electrical power systems explains numerical examples on applying the mathematical methods, into studying small signal stability problems of realistic and large electrical power systems includes detailed and in-depth analysis including non-linear and other advanced aspects provides theoretical understanding and advanced numerical techniques essential for secure operation of power systems provides a comprehensive set of illustrative examples that support theoretical discussions
Templates for the Solution of Algebraic Eigenvalue Problems
Title | Templates for the Solution of Algebraic Eigenvalue Problems PDF eBook |
Author | Zhaojun Bai |
Publisher | SIAM |
Pages | 430 |
Release | 2000-01-01 |
Genre | Computers |
ISBN | 0898714710 |
Mathematics of Computing -- Numerical Analysis.
The Matrix Eigenvalue Problem
Title | The Matrix Eigenvalue Problem PDF eBook |
Author | David S. Watkins |
Publisher | SIAM |
Pages | 452 |
Release | 2007-01-01 |
Genre | Mathematics |
ISBN | 9780898717808 |
The first in-depth, complete, and unified theoretical discussion of the two most important classes of algorithms for solving matrix eigenvalue problems: QR-like algorithms for dense problems and Krylov subspace methods for sparse problems. The author discusses the theory of the generic GR algorithm, including special cases (for example, QR, SR, HR), and the development of Krylov subspace methods. This book also addresses a generic Krylov process and the Arnoldi and various Lanczos algorithms, which are obtained as special cases. Theoretical and computational exercises guide students, step by step, to the results. Downloadable MATLAB programs, compiled by the author, are available on a supplementary Web site. Readers of this book are expected to be familiar with the basic ideas of linear algebra and to have had some experience with matrix computations. Ideal for graduate students, or as a reference book for researchers and users of eigenvalue codes.