Numerical Bifurcation Analysis of Maps
Title | Numerical Bifurcation Analysis of Maps PDF eBook |
Author | I︠U︡riĭ Aleksandrovich Kuznet︠s︡ov |
Publisher | Cambridge University Press |
Pages | 423 |
Release | 2019-03-28 |
Genre | Mathematics |
ISBN | 1108499678 |
Combines a systematic analysis of bifurcations of iterated maps with concrete MATLAB® implementations and applications.
Numerical Bifurcation Analysis of Maps
Title | Numerical Bifurcation Analysis of Maps PDF eBook |
Author | Yuri A. Kuznetsov |
Publisher | Cambridge University Press |
Pages | 424 |
Release | 2019-03-28 |
Genre | Mathematics |
ISBN | 1108695140 |
This book combines a comprehensive state-of-the-art analysis of bifurcations of discrete-time dynamical systems with concrete instruction on implementations (and example applications) in the free MATLAB® software MatContM developed by the authors. While self-contained and suitable for independent study, the book is also written with users in mind and is an invaluable reference for practitioners. Part I focuses on theory, providing a systematic presentation of bifurcations of fixed points and cycles of finite-dimensional maps, up to and including cases with two control parameters. Several complementary methods, including Lyapunov exponents, invariant manifolds and homoclinic structures, and parts of chaos theory, are presented. Part II introduces MatContM through step-by-step tutorials on how to use the general numerical methods described in Part I for simple dynamical models defined by one- and two-dimensional maps. Further examples in Part III show how MatContM can be used to analyze more complicated models from modern engineering, ecology, and economics.
Elements of Applied Bifurcation Theory
Title | Elements of Applied Bifurcation Theory PDF eBook |
Author | Yuri Kuznetsov |
Publisher | Springer Science & Business Media |
Pages | 648 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475739788 |
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Mathematics of Complexity and Dynamical Systems
Title | Mathematics of Complexity and Dynamical Systems PDF eBook |
Author | Robert A. Meyers |
Publisher | Springer Science & Business Media |
Pages | 1885 |
Release | 2011-10-05 |
Genre | Mathematics |
ISBN | 1461418054 |
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Elements of Applied Bifurcation Theory
Title | Elements of Applied Bifurcation Theory PDF eBook |
Author | Yuri A. Kuznetsov |
Publisher | Springer Nature |
Pages | 722 |
Release | 2023-04-18 |
Genre | Mathematics |
ISBN | 3031220072 |
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Nonlinear Dynamics
Title | Nonlinear Dynamics PDF eBook |
Author | Marc R Roussel |
Publisher | Morgan & Claypool Publishers |
Pages | 190 |
Release | 2019-05-01 |
Genre | Science |
ISBN | 1643274643 |
This book uses a hands-on approach to nonlinear dynamics using commonly available software, including the free dynamical systems software Xppaut, Matlab (or its free cousin, Octave) and the Maple symbolic algebra system. Detailed instructions for various common procedures, including bifurcation analysis using the version of AUTO embedded in Xppaut, are provided. This book also provides a survey that can be taught in a single academic term covering a greater variety of dynamical systems (discrete versus continuous time, finite versus infinite-dimensional, dissipative versus conservative) than is normally seen in introductory texts. Numerical computation and linear stability analysis are used as unifying themes throughout the book. Despite the emphasis on computer calculations, theory is not neglected, and fundamental concepts from the field of nonlinear dynamics such as solution maps and invariant manifolds are presented.
Numerical Continuation Methods
Title | Numerical Continuation Methods PDF eBook |
Author | Eugene L. Allgower |
Publisher | Springer Science & Business Media |
Pages | 402 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642612571 |
Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.