Numerical Analysis of Variational Inequalities
Title | Numerical Analysis of Variational Inequalities PDF eBook |
Author | R. Trémolières |
Publisher | Elsevier |
Pages | 807 |
Release | 2011-08-18 |
Genre | Mathematics |
ISBN | 0080875297 |
Numerical Analysis of Variational Inequalities
Numerical Methods for Nonlinear Variational Problems
Title | Numerical Methods for Nonlinear Variational Problems PDF eBook |
Author | Roland Glowinski |
Publisher | Springer |
Pages | 493 |
Release | 2013-10-03 |
Genre | Science |
ISBN | 9783662126158 |
This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.
Variational Inequalities and Frictional Contact Problems
Title | Variational Inequalities and Frictional Contact Problems PDF eBook |
Author | Anca Capatina |
Publisher | Springer |
Pages | 242 |
Release | 2014-09-16 |
Genre | Mathematics |
ISBN | 3319101633 |
Variational Inequalities and Frictional Contact Problems contains a carefully selected collection of results on elliptic and evolutionary quasi-variational inequalities including existence, uniqueness, regularity, dual formulations, numerical approximations and error estimates ones. By using a wide range of methods and arguments, the results are presented in a constructive way, with clarity and well justified proofs. This approach makes the subjects accessible to mathematicians and applied mathematicians. Moreover, this part of the book can be used as an excellent background for the investigation of more general classes of variational inequalities. The abstract variational inequalities considered in this book cover the variational formulations of many static and quasi-static contact problems. Based on these abstract results, in the last part of the book, certain static and quasi-static frictional contact problems in elasticity are studied in an almost exhaustive way. The readers will find a systematic and unified exposition on classical, variational and dual formulations, existence, uniqueness and regularity results, finite element approximations and related optimal control problems. This part of the book is an update of the Signorini problem with nonlocal Coulomb friction, a problem little studied and with few results in the literature. Also, in the quasi-static case, a control problem governed by a bilateral contact problem is studied. Despite the theoretical nature of the presented results, the book provides a background for the numerical analysis of contact problems. The materials presented are accessible to both graduate/under graduate students and to researchers in applied mathematics, mechanics, and engineering. The obtained results have numerous applications in mechanics, engineering and geophysics. The book contains a good amount of original results which, in this unified form, cannot be found anywhere else.
Contact Problems in Elasticity
Title | Contact Problems in Elasticity PDF eBook |
Author | N. Kikuchi |
Publisher | SIAM |
Pages | 508 |
Release | 1988-01-01 |
Genre | Science |
ISBN | 9781611970845 |
The contact of one deformable body with another lies at the heart of almost every mechanical structure. Here, in a comprehensive treatment, two of the field's leading researchers present a systematic approach to contact problems. Using variational formulations, Kikuchi and Oden derive a multitude of new results, both for classical problems and for nonlinear problems involving large deflections and buckling of thin plates with unilateral supports, dry friction with nonclassical laws, large elastic and elastoplastic deformations with frictional contact, dynamic contacts with dynamic frictional effects, and rolling contacts. This method exposes properties of solutions obscured by classical methods, and it provides a basis for the development of powerful numerical schemes. Among the novel results presented here are algorithms for contact problems with nonlinear and nonlocal friction, and very effective algorithms for solving problems involving the large elastic deformation of hyperelastic bodies with general contact conditions. Includes detailed discussion of numerical methods for nonlinear materials with unilateral contact and friction, with examples of metalforming simulations. Also presents algorithms for the finite deformation rolling contact problem, along with a discussion of numerical examples.
Combined Relaxation Methods for Variational Inequalities
Title | Combined Relaxation Methods for Variational Inequalities PDF eBook |
Author | Igor Konnov |
Publisher | Springer Science & Business Media |
Pages | 190 |
Release | 2012-12-06 |
Genre | Business & Economics |
ISBN | 3642568866 |
Variational inequalities proved to be a very useful and powerful tool for in vestigation and solution of many equilibrium type problems in Economics, Engineering, Operations Research and Mathematical Physics. In fact, varia tional inequalities for example provide a unifying framework for the study of such diverse problems as boundary value problems, price equilibrium prob lems and traffic network equilibrium problems. Besides, they are closely re lated with many general problems of Nonlinear Analysis, such as fixed point, optimization and complementarity problems. As a result, the theory and so lution methods for variational inequalities have been studied extensively, and considerable advances have been made in these areas. This book is devoted to a new general approach to constructing solution methods for variational inequalities, which was called the combined relax ation (CR) approach. This approach is based on combining, modifying and generalizing ideas contained in various relaxation methods. In fact, each com bined relaxation method has a two-level structure, i.e., a descent direction and a stepsize at each iteration are computed by finite relaxation procedures.
Convex Analysis and Variational Problems
Title | Convex Analysis and Variational Problems PDF eBook |
Author | Ivar Ekeland |
Publisher | SIAM |
Pages | 414 |
Release | 1999-12-01 |
Genre | Mathematics |
ISBN | 9781611971088 |
This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.
Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces
Title | Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces PDF eBook |
Author | Michael Ulbrich |
Publisher | SIAM |
Pages | 315 |
Release | 2011-07-28 |
Genre | Mathematics |
ISBN | 1611970687 |
A comprehensive treatment of semismooth Newton methods in function spaces: from their foundations to recent progress in the field. This book is appropriate for researchers and practitioners in PDE-constrained optimization, nonlinear optimization and numerical analysis, as well as engineers interested in the current theory and methods for solving variational inequalities.