Number Theory in Function Fields

Number Theory in Function Fields
Title Number Theory in Function Fields PDF eBook
Author Michael Rosen
Publisher Springer Science & Business Media
Pages 355
Release 2013-04-18
Genre Mathematics
ISBN 1475760469

Download Number Theory in Function Fields Book in PDF, Epub and Kindle

Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.

Algebraic Function Fields and Codes

Algebraic Function Fields and Codes
Title Algebraic Function Fields and Codes PDF eBook
Author Henning Stichtenoth
Publisher Springer Science & Business Media
Pages 360
Release 2009-02-11
Genre Mathematics
ISBN 3540768785

Download Algebraic Function Fields and Codes Book in PDF, Epub and Kindle

This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.

Topics in the Theory of Algebraic Function Fields

Topics in the Theory of Algebraic Function Fields
Title Topics in the Theory of Algebraic Function Fields PDF eBook
Author Gabriel Daniel Villa Salvador
Publisher Springer Science & Business Media
Pages 658
Release 2007-10-10
Genre Mathematics
ISBN 0817645152

Download Topics in the Theory of Algebraic Function Fields Book in PDF, Epub and Kindle

The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of numbers. The examination explains both the similarities and fundamental differences between function fields and number fields, including many exercises and examples to enhance understanding and motivate further study. The only prerequisites are a basic knowledge of field theory, complex analysis, and some commutative algebra.

Basic Structures of Function Field Arithmetic

Basic Structures of Function Field Arithmetic
Title Basic Structures of Function Field Arithmetic PDF eBook
Author David Goss
Publisher Springer Science & Business Media
Pages 433
Release 2012-12-06
Genre Mathematics
ISBN 3642614809

Download Basic Structures of Function Field Arithmetic Book in PDF, Epub and Kindle

From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062

Number Theory

Number Theory
Title Number Theory PDF eBook
Author Helmut Koch
Publisher American Mathematical Soc.
Pages 390
Release 2000
Genre Mathematics
ISBN 9780821820544

Download Number Theory Book in PDF, Epub and Kindle

Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.

Advanced Topics in Computational Number Theory

Advanced Topics in Computational Number Theory
Title Advanced Topics in Computational Number Theory PDF eBook
Author Henri Cohen
Publisher Springer Science & Business Media
Pages 591
Release 2012-10-29
Genre Mathematics
ISBN 1441984895

Download Advanced Topics in Computational Number Theory Book in PDF, Epub and Kindle

Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.

Basic Number Theory.

Basic Number Theory.
Title Basic Number Theory. PDF eBook
Author Andre Weil
Publisher Springer Science & Business Media
Pages 332
Release 2013-12-14
Genre Mathematics
ISBN 3662059789

Download Basic Number Theory. Book in PDF, Epub and Kindle

Itpzf}JlOV, li~oxov uoq>ZUJlCJ. 7:WV Al(JX., llpoj1. AE(Jj1. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set ofnotes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by ChevaIley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very welt It contained abrief but essentially com plete account of the main features of c1assfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I inc1uded such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather c10sely at some critical points.