Handbook of Number Theory I
Title | Handbook of Number Theory I PDF eBook |
Author | József Sándor |
Publisher | Springer Science & Business Media |
Pages | 638 |
Release | 2005-11-17 |
Genre | Mathematics |
ISBN | 1402042159 |
This handbook covers a wealth of topics from number theory, special attention being given to estimates and inequalities. As a rule, the most important results are presented, together with their refinements, extensions or generalisations. These may be applied to other aspects of number theory, or to a wide range of mathematical disciplines. Cross-references provide new insight into fundamental research. Audience: This is an indispensable reference work for specialists in number theory and other mathematicians who need access to some of these results in their own fields of research.
Probabilistic Number Theory II
Title | Probabilistic Number Theory II PDF eBook |
Author | P.D.T.A. Elliott |
Publisher | Springer |
Pages | 375 |
Release | 2011-12-07 |
Genre | Mathematics |
ISBN | 9781461299943 |
In this volume we study the value distribution of arithmetic functions, allowing unbounded renormalisations. The methods involve a synthesis of Probability and Number Theory; sums of independent infinitesimal random variables playing an important role. A central problem is to decide when an additive arithmetic function fin) admits a renormalisation by real functions a(x) and {3(x) > 0 so that asx ~ 00 the frequencies vx(n;f (n) - a(x) :s;; z {3 (x) ) converge weakly; (see Notation). In contrast to volume one we allow {3(x) to become unbounded with x. In particular, we investigate to what extent one can simulate the behaviour of additive arithmetic functions by that of sums of suit ably defined independent random variables. This fruiful point of view was intro duced in a 1939 paper of Erdos and Kac. We obtain their (now classical) result in Chapter 12. Subsequent methods involve both Fourier analysis on the line, and the appli cation of Dirichlet series. Many additional topics are considered. We mention only: a problem of Hardy and Ramanujan; local properties of additive arithmetic functions; the rate of convergence of certain arithmetic frequencies to the normal law; the arithmetic simulation of all stable laws. As in Volume I the historical background of various results is discussed, forming an integral part of the text. In Chapters 12 and 19 these considerations are quite extensive, and an author often speaks for himself.
Number Theory
Title | Number Theory PDF eBook |
Author | Henri Cohen |
Publisher | Springer Science & Business Media |
Pages | 619 |
Release | 2008-12-17 |
Genre | Mathematics |
ISBN | 038749894X |
This book deals with several aspects of what is now called "explicit number theory." The central theme is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The local aspect, global aspect, and the third aspect is the theory of zeta and L-functions. This last aspect can be considered as a unifying theme for the whole subject.
Number Theory II
Title | Number Theory II PDF eBook |
Author | A. N. Parshin |
Publisher | Springer |
Pages | 292 |
Release | 1992 |
Genre | Mathematics |
ISBN |
Volume 62 of the Encyclopedia presents the main structures and results of algebraic number theory with emphasis on algebraic number fields and class field theory. Written for the nonspecialist, the author assumes a general understanding of modern algebra and elementary number theory. Only the general properties of algebraic number fields and relate.
A Course in Computational Algebraic Number Theory
Title | A Course in Computational Algebraic Number Theory PDF eBook |
Author | Henri Cohen |
Publisher | Springer Science & Business Media |
Pages | 556 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 3662029456 |
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
A Course in Number Theory
Title | A Course in Number Theory PDF eBook |
Author | H. E. Rose |
Publisher | Oxford University Press |
Pages | 420 |
Release | 1995 |
Genre | Mathematics |
ISBN | 9780198523765 |
This textbook covers the main topics in number theory as taught in universities throughout the world. Number theory deals mainly with properties of integers and rational numbers; it is not an organized theory in the usual sense but a vast collection of individual topics and results, with some coherent sub-theories and a long list of unsolved problems. This book excludes topics relying heavily on complex analysis and advanced algebraic number theory. The increased use of computers in number theory is reflected in many sections (with much greater emphasis in this edition). Some results of a more advanced nature are also given, including the Gelfond-Schneider theorem, the prime number theorem, and the Mordell-Weil theorem. The latest work on Fermat's last theorem is also briefly discussed. Each chapter ends with a collection of problems; hints or sketch solutions are given at the end of the book, together with various useful tables.
Lectures on Number Theory
Title | Lectures on Number Theory PDF eBook |
Author | Peter Gustav Lejeune Dirichlet |
Publisher | American Mathematical Soc. |
Pages | 297 |
Release | 1999 |
Genre | Mathematics |
ISBN | 0821820176 |
Lectures on Number Theory is the first of its kind on the subject matter. It covers most of the topics that are standard in a modern first course on number theory, but also includes Dirichlet's famous results on class numbers and primes in arithmetic progressions.