Electrocatalysts for Low Temperature Fuel Cells
Title | Electrocatalysts for Low Temperature Fuel Cells PDF eBook |
Author | Thandavarayan Maiyalagan |
Publisher | John Wiley & Sons |
Pages | 618 |
Release | 2017-05-08 |
Genre | Technology & Engineering |
ISBN | 3527803890 |
Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.
Non-Noble Metal Fuel Cell Catalysts
Title | Non-Noble Metal Fuel Cell Catalysts PDF eBook |
Author | Zhongwei Chen |
Publisher | John Wiley & Sons |
Pages | 448 |
Release | 2014-04-03 |
Genre | Technology & Engineering |
ISBN | 3527664920 |
Written and edited by top fuel cell catalyst scientists and engineers from both industry and academia, this is the first book to provide a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal electrocatalysts, as well as their integration into fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured approach, this is a must-have for researchers working on the topic, and an equally valuable companion for newcomers to the field.
Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions
Title | Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions PDF eBook |
Author | Hui Yang |
Publisher | MDPI |
Pages | 190 |
Release | 2019-11-01 |
Genre | Science |
ISBN | 303921540X |
Research on alternative energy harvesting technologies, conversion and storage systems with high efficiency, cost-effective and environmentally friendly systems, such as fuel cells, rechargeable metal-air batteries, unitized regenerative cells, and water electrolyzers has been stimulated by the global demand on energy. The conversion between oxygen and water plays a key step in the development of oxygen electrodes: oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), processes activated mostly by precious metals, like platinum. Their scarcity, their prohibitive cost, and declining activity greatly hamper large-scale applications. This issue reports on novel non-precious metal electrocatalysts based on the innovative design in chemical compositions, structure, and morphology, and supports for the oxygen reaction.
PEM Fuel Cell Electrocatalysts and Catalyst Layers
Title | PEM Fuel Cell Electrocatalysts and Catalyst Layers PDF eBook |
Author | Jiujun Zhang |
Publisher | Springer Science & Business Media |
Pages | 1147 |
Release | 2008-08-26 |
Genre | Technology & Engineering |
ISBN | 1848009364 |
Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.
N4-Macrocyclic Metal Complexes
Title | N4-Macrocyclic Metal Complexes PDF eBook |
Author | J.H. Zagal |
Publisher | Springer Science & Business Media |
Pages | 828 |
Release | 2006-07-19 |
Genre | Science |
ISBN | 038728429X |
In response to significant developments in sensor science and technology, this book offers insight into the various extended applications and developments of N4 macrocycle complexes in biomimetic electrocatalysis. Covers chemical properties of electrocatalysts, use of specific species, and analytical applications.
PEM Fuel Cells
Title | PEM Fuel Cells PDF eBook |
Author | Gurbinder Kaur |
Publisher | Elsevier |
Pages | 584 |
Release | 2021-11-16 |
Genre | Science |
ISBN | 0128237090 |
PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application provides a comprehensive introduction to the principles of PEM fuel cell, their working condition and application, and the latest breakthroughs and challenges for fuel cell technology. Each chapter follows a systematic and consistent structure with clear illustrations and diagrams for easy understanding. The opening chapters address the basics of PEM technology; stacking and membrane electrode assembly for PEM, degradation mechanisms of electrocatalysts, platinum dissolution and redeposition, carbon-support corrosion, bipolar plates and carbon nanotubes for the PEM, and gas diffusion layers. Thermodynamics, operating conditions, and electrochemistry address fuel cell efficiency and the fundamental workings of the PEM. Instruments and techniques for testing and diagnosis are then presented alongside practical tests. Dedicated chapters explain how to use MATLAB and COMSOL to conduct simulation and modeling of catalysts, gas diffusion layers, assembly, and membrane. Degradation and failure modes are discussed in detail, providing strategies and protocols for mitigation. High-temperature PEMs are also examined, as are the fundamentals of EIS. Critically, the environmental impact and life cycle of the production and storage of hydrogen are addressed, as are the risk and durability issues of PEMFC technology. Dedicated chapters are presented on the economics and commercialization of PEMFCs, including discussion of installation costs, initial capital costs, and the regulatory frameworks; apart from this, there is a separate chapter on their application to the automotive industry. Finally, future challenges and applications are considered. PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application provides an in-depth and comprehensive reference on every aspect of PEM fuel cells fundamentals, ideal for researchers, graduates, and students. - Presents the fundamentals of PEM fuel cell technology, electrolytes, membranes, modeling, conductivity, recent trends, and future applications - Addresses commercialization, public policy, and the environmental impacts of PEMFC in dedicated chapters - Presents state-of-the-art PEMFC research alongside the underlying concepts
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries
Title | Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries PDF eBook |
Author | Teko Napporn |
Publisher | Elsevier |
Pages | 292 |
Release | 2021-01-30 |
Genre | Technology & Engineering |
ISBN | 0128184973 |
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications