Normed Amenability and Bounded Cohomology over Non-Archimedean Fields

Normed Amenability and Bounded Cohomology over Non-Archimedean Fields
Title Normed Amenability and Bounded Cohomology over Non-Archimedean Fields PDF eBook
Author Francesco Fournier-Facio
Publisher American Mathematical Society
Pages 116
Release 2024-08-19
Genre Mathematics
ISBN 1470470918

Download Normed Amenability and Bounded Cohomology over Non-Archimedean Fields Book in PDF, Epub and Kindle

View the abstract.

Weil's Conjecture for Function Fields

Weil's Conjecture for Function Fields
Title Weil's Conjecture for Function Fields PDF eBook
Author Dennis Gaitsgory
Publisher Princeton University Press
Pages 321
Release 2019-02-19
Genre Mathematics
ISBN 0691184437

Download Weil's Conjecture for Function Fields Book in PDF, Epub and Kindle

A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil’s conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil’s conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting l-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors. Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil’s conjecture. The proof of the product formula will appear in a sequel volume.

Bounded Cohomology of Discrete Groups

Bounded Cohomology of Discrete Groups
Title Bounded Cohomology of Discrete Groups PDF eBook
Author Roberto Frigerio
Publisher American Mathematical Soc.
Pages 213
Release 2017-11-21
Genre Mathematics
ISBN 1470441462

Download Bounded Cohomology of Discrete Groups Book in PDF, Epub and Kindle

The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate students, and as a valuable landmark text for researchers, providing both the details of the theory of bounded cohomology and links of the theory to other closely related areas. The first part of the book is devoted to settling the fundamental definitions of the theory, and to proving some of the (by now classical) results on low-dimensional bounded cohomology and on bounded cohomology of topological spaces. The second part describes applications of the theory to the study of the simplicial volume of manifolds, to the classification of circle actions, to the analysis of maximal representations of surface groups, and to the study of flat vector bundles with a particular emphasis on the possible use of bounded cohomology in relation with the Chern conjecture. Each chapter ends with a discussion of further reading that puts the presented results in a broader context.

Spectral Theory and Analytic Geometry over Non-Archimedean Fields

Spectral Theory and Analytic Geometry over Non-Archimedean Fields
Title Spectral Theory and Analytic Geometry over Non-Archimedean Fields PDF eBook
Author Vladimir G. Berkovich
Publisher American Mathematical Soc.
Pages 181
Release 2012-08-02
Genre Mathematics
ISBN 0821890204

Download Spectral Theory and Analytic Geometry over Non-Archimedean Fields Book in PDF, Epub and Kindle

The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and -adic analysis.

Mathematical Reviews

Mathematical Reviews
Title Mathematical Reviews PDF eBook
Author
Publisher
Pages 872
Release 2007
Genre Mathematics
ISBN

Download Mathematical Reviews Book in PDF, Epub and Kindle

Metric Structures for Riemannian and Non-Riemannian Spaces

Metric Structures for Riemannian and Non-Riemannian Spaces
Title Metric Structures for Riemannian and Non-Riemannian Spaces PDF eBook
Author Mikhail Gromov
Publisher Springer Science & Business Media
Pages 594
Release 2007-06-25
Genre Mathematics
ISBN 0817645837

Download Metric Structures for Riemannian and Non-Riemannian Spaces Book in PDF, Epub and Kindle

This book is an English translation of the famous "Green Book" by Lafontaine and Pansu (1979). It has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices, by Gromov on Levy's inequality, by Pansu on "quasiconvex" domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures, as well as an extensive bibliography and index round out this unique and beautiful book.

Rings, Modules, and Algebras in Stable Homotopy Theory

Rings, Modules, and Algebras in Stable Homotopy Theory
Title Rings, Modules, and Algebras in Stable Homotopy Theory PDF eBook
Author Anthony D. Elmendorf
Publisher American Mathematical Soc.
Pages 265
Release 1997
Genre Mathematics
ISBN 0821843036

Download Rings, Modules, and Algebras in Stable Homotopy Theory Book in PDF, Epub and Kindle

This book introduces a new point-set level approach to stable homotopy theory that has already had many applications and promises to have a lasting impact on the subject. Given the sphere spectrum $S$, the authors construct an associative, commutative, and unital smash product in a complete and cocomplete category of ``$S$-modules'' whose derived category is equivalent to the classical stable homotopy category. This construction allows for a simple and algebraically manageable definition of ``$S$-algebras'' and ``commutative $S$-algebras'' in terms of associative, or associative and commutative, products $R\wedge SR \longrightarrow R$. These notions are essentially equivalent to the earlier notions of $A {\infty $ and $E {\infty $ ring spectra, and the older notions feed naturally into the new framework to provide plentiful examples. There is an equally simple definition of $R$-modules in terms of maps $R\wedge SM\longrightarrow M$. When $R$ is commutative, the category of $R$-modules also has a