Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems
Title | Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems PDF eBook |
Author | Michael Beals |
Publisher | Springer Science & Business Media |
Pages | 153 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461245540 |
This book developed from a series of lectures I gave at the Symposium on Nonlinear Microlocal Analysis held at Nanjing University in October. 1988. Its purpose is to give an overview of the use of microlocal analysis and commutators in the study of solutions to nonlinear wave equations. The weak singularities in the solutions to such equations behave up to a certain extent like those present in the linear case: they propagate along the null bicharacteristics of the operator. On the other hand. examples exhibiting singularities not present in the linear case can also be constructed. I have tried to present a crossection of both the regularity results and the singular examples. for problems on the interior of a domain and on domains with boundary. The main emphasis is on the case of more than one space dimen sion. since that case is treated in great detail in the paper of Rauch-Reed 159]. The results presented here have for the most part appeared elsewhere. and are the work of many authors. but a few new examples and proofs are given. I have attempted to indicate the essential ideas behind the arguments. so that only some of the results are proved in full detail. It is hoped that the central notions of the more technical proofs appearing in research papers will be illuminated by these simpler cases.
Finite Volume Methods for Hyperbolic Problems
Title | Finite Volume Methods for Hyperbolic Problems PDF eBook |
Author | Randall J. LeVeque |
Publisher | Cambridge University Press |
Pages | 582 |
Release | 2002-08-26 |
Genre | Mathematics |
ISBN | 1139434187 |
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Lectures on Nonlinear Hyperbolic Differential Equations
Title | Lectures on Nonlinear Hyperbolic Differential Equations PDF eBook |
Author | Lars Hörmander |
Publisher | Springer Science & Business Media |
Pages | 308 |
Release | 1997-07-17 |
Genre | Mathematics |
ISBN | 9783540629214 |
In this introductory textbook, a revised and extended version of well-known lectures by L. Hörmander from 1986, four chapters are devoted to weak solutions of systems of conservation laws. Apart from that the book only studies classical solutions. Two chapters concern the existence of global solutions or estimates of the lifespan for solutions of nonlinear perturbations of the wave or Klein-Gordon equation with small initial data. Four chapters are devoted to microanalysis of the singularities of the solutions. This part assumes some familiarity with pseudodifferential operators which are standard in the theory of linear differential operators, but the extension to the more exotic classes of opertors needed in the nonlinear theory is presented in complete detail.
Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws
Title | Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws PDF eBook |
Author | François Bouchut |
Publisher | Springer Science & Business Media |
Pages | 148 |
Release | 2004-06-25 |
Genre | Mathematics |
ISBN | 9783764366650 |
The schemes are analyzed regarding their nonlinear stability Recently developed entropy schemes are presented A formalism is introduced for source terms
Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors
Title | Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors PDF eBook |
Author | Yuming Qin |
Publisher | Springer Science & Business Media |
Pages | 472 |
Release | 2008-11-25 |
Genre | Mathematics |
ISBN | 3764388145 |
This book presents recent results concerning the global existence in time, the large-time behavior, decays of solutions and the existence of global attractors for nonlinear parabolic-hyperbolic coupled systems of evolutionary partial differential equations.
Numerical Approximation of Hyperbolic Systems of Conservation Laws
Title | Numerical Approximation of Hyperbolic Systems of Conservation Laws PDF eBook |
Author | Edwige Godlewski |
Publisher | Springer Nature |
Pages | 846 |
Release | 2021-08-28 |
Genre | Mathematics |
ISBN | 1071613448 |
This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.
Theory, Numerics and Applications of Hyperbolic Problems II
Title | Theory, Numerics and Applications of Hyperbolic Problems II PDF eBook |
Author | Christian Klingenberg |
Publisher | Springer |
Pages | 698 |
Release | 2018-06-27 |
Genre | Mathematics |
ISBN | 3319915487 |
The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.