Noncommutative Curves of Genus Zero
Title | Noncommutative Curves of Genus Zero PDF eBook |
Author | Dirk Kussin |
Publisher | American Mathematical Soc. |
Pages | 146 |
Release | 2009-08-07 |
Genre | Mathematics |
ISBN | 0821844008 |
In these notes the author investigates noncommutative smooth projective curves of genus zero, also called exceptional curves. As a main result he shows that each such curve $\mathbb{X}$ admits, up to some weighting, a projective coordinate algebra which is a not necessarily commutative graded factorial domain $R$ in the sense of Chatters and Jordan. Moreover, there is a natural bijection between the points of $\mathbb{X}$ and the homogeneous prime ideals of height one in $R$, and these prime ideals are principal in a strong sense.
Noncommutative Geometry, Quantum Fields and Motives
Title | Noncommutative Geometry, Quantum Fields and Motives PDF eBook |
Author | Alain Connes |
Publisher | American Mathematical Soc. |
Pages | 810 |
Release | 2019-03-13 |
Genre | Mathematics |
ISBN | 1470450453 |
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Symplectic, Poisson, and Noncommutative Geometry
Title | Symplectic, Poisson, and Noncommutative Geometry PDF eBook |
Author | Tohru Eguchi |
Publisher | Cambridge University Press |
Pages | 303 |
Release | 2014-08-25 |
Genre | Mathematics |
ISBN | 1107056411 |
This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute.
Operator Theory on Noncommutative Domains
Title | Operator Theory on Noncommutative Domains PDF eBook |
Author | Gelu Popescu |
Publisher | American Mathematical Soc. |
Pages | 137 |
Release | 2010 |
Genre | Mathematics |
ISBN | 0821847104 |
"Volume 205, number 964 (third of 5 numbers)."
Noncommutative Differential Geometry and Its Applications to Physics
Title | Noncommutative Differential Geometry and Its Applications to Physics PDF eBook |
Author | Yoshiaki Maeda |
Publisher | Springer Science & Business Media |
Pages | 310 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9401007047 |
Noncommutative differential geometry is a new approach to classical geometry. It was originally used by Fields Medalist A. Connes in the theory of foliations, where it led to striking extensions of Atiyah-Singer index theory. It also may be applicable to hitherto unsolved geometric phenomena and physical experiments. However, noncommutative differential geometry was not well understood even among mathematicians. Therefore, an international symposium on commutative differential geometry and its applications to physics was held in Japan, in July 1999. Topics covered included: deformation problems, Poisson groupoids, operad theory, quantization problems, and D-branes. The meeting was attended by both mathematicians and physicists, which resulted in interesting discussions. This volume contains the refereed proceedings of this symposium. Providing a state of the art overview of research in these topics, this book is suitable as a source book for a seminar in noncommutative geometry and physics.
Non-Divergence Equations Structured on Hormander Vector Fields: Heat Kernels and Harnack Inequalities
Title | Non-Divergence Equations Structured on Hormander Vector Fields: Heat Kernels and Harnack Inequalities PDF eBook |
Author | Marco Bramanti |
Publisher | American Mathematical Soc. |
Pages | 136 |
Release | 2010 |
Genre | Mathematics |
ISBN | 0821849034 |
"March 2010, Volume 204, number 961 (end of volume)."
Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case
Title | Towards Non-Abelian P-adic Hodge Theory in the Good Reduction Case PDF eBook |
Author | Martin C. Olsson |
Publisher | American Mathematical Soc. |
Pages | 170 |
Release | 2011-02-07 |
Genre | Mathematics |
ISBN | 082185240X |
The author develops a non-abelian version of $p$-adic Hodge Theory for varieties (possibly open with ``nice compactification'') with good reduction. This theory yields in particular a comparison between smooth $p$-adic sheaves and $F$-isocrystals on the level of certain Tannakian categories, $p$-adic Hodge theory for relative Malcev completions of fundamental groups and their Lie algebras, and gives information about the action of Galois on fundamental groups.