Nonarchimedean Functional Analysis

Nonarchimedean Functional Analysis
Title Nonarchimedean Functional Analysis PDF eBook
Author Peter Schneider
Publisher Springer Science & Business Media
Pages 159
Release 2013-03-09
Genre Mathematics
ISBN 3662047284

Download Nonarchimedean Functional Analysis Book in PDF, Epub and Kindle

This book grew out of a course which I gave during the winter term 1997/98 at the Universitat Munster. The course covered the material which here is presented in the first three chapters. The fourth more advanced chapter was added to give the reader a rather complete tour through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. There is one serious restriction, though, which seemed inevitable to me in the interest of a clear presentation. In its deeper aspects the theory depends very much on the field being spherically complete or not. To give a drastic example, if the field is not spherically complete then there exist nonzero locally convex vector spaces which do not have a single nonzero continuous linear form. Although much progress has been made to overcome this problem a really nice and complete theory which to a large extent is analogous to classical functional analysis can only exist over spherically complete field8. I therefore allowed myself to restrict to this case whenever a conceptual clarity resulted. Although I hope that thi8 text will also be useful to the experts as a reference my own motivation for giving that course and writing this book was different. I had the reader in mind who wants to use locally convex vector spaces in the applications and needs a text to quickly gra8p this theory.

Nonarchimedean Functional Analysis

Nonarchimedean Functional Analysis
Title Nonarchimedean Functional Analysis PDF eBook
Author Peter Schneider
Publisher Springer Science & Business Media
Pages 176
Release 2001-11-20
Genre Mathematics
ISBN 9783540425335

Download Nonarchimedean Functional Analysis Book in PDF, Epub and Kindle

This book grew out of a course which I gave during the winter term 1997/98 at the Universitat Munster. The course covered the material which here is presented in the first three chapters. The fourth more advanced chapter was added to give the reader a rather complete tour through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. There is one serious restriction, though, which seemed inevitable to me in the interest of a clear presentation. In its deeper aspects the theory depends very much on the field being spherically complete or not. To give a drastic example, if the field is not spherically complete then there exist nonzero locally convex vector spaces which do not have a single nonzero continuous linear form. Although much progress has been made to overcome this problem a really nice and complete theory which to a large extent is analogous to classical functional analysis can only exist over spherically complete field8. I therefore allowed myself to restrict to this case whenever a conceptual clarity resulted. Although I hope that thi8 text will also be useful to the experts as a reference my own motivation for giving that course and writing this book was different. I had the reader in mind who wants to use locally convex vector spaces in the applications and needs a text to quickly gra8p this theory.

Locally Convex Spaces over Non-Archimedean Valued Fields

Locally Convex Spaces over Non-Archimedean Valued Fields
Title Locally Convex Spaces over Non-Archimedean Valued Fields PDF eBook
Author C. Perez-Garcia
Publisher Cambridge University Press
Pages 486
Release 2010-01-07
Genre Mathematics
ISBN 9780521192439

Download Locally Convex Spaces over Non-Archimedean Valued Fields Book in PDF, Epub and Kindle

Non-Archimedean functional analysis, where alternative but equally valid number systems such as p-adic numbers are fundamental, is a fast-growing discipline widely used not just within pure mathematics, but also applied in other sciences, including physics, biology and chemistry. This book is the first to provide a comprehensive treatment of non-Archimedean locally convex spaces. The authors provide a clear exposition of the basic theory, together with complete proofs and new results from the latest research. A guide to the many illustrative examples provided, end-of-chapter notes and glossary of terms all make this book easily accessible to beginners at the graduate level, as well as specialists from a variety of disciplines.

Non-Archimedean Analysis

Non-Archimedean Analysis
Title Non-Archimedean Analysis PDF eBook
Author Siegfried Bosch
Publisher Springer
Pages 436
Release 2012-06-28
Genre Mathematics
ISBN 9783642522314

Download Non-Archimedean Analysis Book in PDF, Epub and Kindle

: So eine Illrbeit witb eigentIid) nie rertig, man muli iie fur fertig erfHiren, wenn man nad) 8eit nnb Umftiinben bas moglid)fte get an qat. (@oetqe

Non-Archimedean Functional Analysis

Non-Archimedean Functional Analysis
Title Non-Archimedean Functional Analysis PDF eBook
Author Arnoud C. M. Rooij
Publisher
Pages 432
Release 1978
Genre Mathematics
ISBN

Download Non-Archimedean Functional Analysis Book in PDF, Epub and Kindle

p-adic Functional Analysis

p-adic Functional Analysis
Title p-adic Functional Analysis PDF eBook
Author W.H. Schikhof
Publisher CRC Press
Pages 419
Release 2020-11-26
Genre Mathematics
ISBN 1000145913

Download p-adic Functional Analysis Book in PDF, Epub and Kindle

"Contains research articles by nearly 40 leading mathematicians from North and South America, Europe, Africa, and Asia, presented at the Fourth International Conference on p-adic Functional Analysis held recently in Nijmegen, The Netherlands. Includes numerous new open problems documented with extensive comments and references."

Meromorphic Functions over non-Archimedean Fields

Meromorphic Functions over non-Archimedean Fields
Title Meromorphic Functions over non-Archimedean Fields PDF eBook
Author Pei-Chu Hu
Publisher Springer Science & Business Media
Pages 308
Release 2000-09-30
Genre Mathematics
ISBN 9780792365327

Download Meromorphic Functions over non-Archimedean Fields Book in PDF, Epub and Kindle

This book introduces value distribution theory over non-Archimedean fields, starting with a survey of two Nevanlinna-type main theorems and defect relations for meromorphic functions and holomorphic curves. Secondly, it gives applications of the above theory to, e.g., abc-conjecture, Waring's problem, uniqueness theorems for meromorphic functions, and Malmquist-type theorems for differential equations over non-Archimedean fields. Next, iteration theory of rational and entire functions over non-Archimedean fields and Schmidt's subspace theorems are studied. Finally, the book suggests some new problems for further research. Audience: This work will be of interest to graduate students working in complex or diophantine approximation as well as to researchers involved in the fields of analysis, complex function theory of one or several variables, and analytic spaces.