Non-Self-Adjoint Boundary Eigenvalue Problems

Non-Self-Adjoint Boundary Eigenvalue Problems
Title Non-Self-Adjoint Boundary Eigenvalue Problems PDF eBook
Author R. Mennicken
Publisher Elsevier
Pages 519
Release 2003-06-26
Genre Mathematics
ISBN 0080537731

Download Non-Self-Adjoint Boundary Eigenvalue Problems Book in PDF, Epub and Kindle

This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and n-th order ordinary differential equations.In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every n-th order differential equation is equivalentto a first order system, the main techniques are developed for systems. Asymptotic fundamentalsystems are derived for a large class of systems of differential equations. Together with boundaryconditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10.The contour integral method and estimates of the resolvent are used to prove expansion theorems.For Stone regular problems, not all functions are expandable, and again relatively easy verifiableconditions are given, in terms of auxiliary boundary conditions, for functions to be expandable.Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such asthe Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated.Key features:• Expansion Theorems for Ordinary Differential Equations • Discusses Applications to Problems from Physics and Engineering • Thorough Investigation of Asymptotic Fundamental Matrices and Systems • Provides a Comprehensive Treatment • Uses the Contour Integral Method • Represents the Problems as Bounded Operators • Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions

Nonconservative Stability Problems of Modern Physics

Nonconservative Stability Problems of Modern Physics
Title Nonconservative Stability Problems of Modern Physics PDF eBook
Author Oleg N. Kirillov
Publisher Walter de Gruyter GmbH & Co KG
Pages 548
Release 2021-03-08
Genre Science
ISBN 3110655403

Download Nonconservative Stability Problems of Modern Physics Book in PDF, Epub and Kindle

This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler’s destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics.

Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications

Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications
Title Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications PDF eBook
Author Manfred Möller
Publisher Birkhäuser
Pages 418
Release 2015-06-11
Genre Mathematics
ISBN 3319170708

Download Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications Book in PDF, Epub and Kindle

The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail. Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader’s background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations
Title Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations PDF eBook
Author Mitsuhiro T. Nakao
Publisher Springer Nature
Pages 469
Release 2019-11-11
Genre Mathematics
ISBN 9811376697

Download Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations Book in PDF, Epub and Kindle

In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a “theoretical” proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form -∆u=f(x,u,∇u) with Dirichlet boundary conditions. Here, by “verified computation” is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors’ methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Spectral Analysis of Differential Operators

Spectral Analysis of Differential Operators
Title Spectral Analysis of Differential Operators PDF eBook
Author Fedor S. Rofe-Beketov
Publisher World Scientific
Pages 463
Release 2005
Genre Science
ISBN 9812562761

Download Spectral Analysis of Differential Operators Book in PDF, Epub and Kindle

- Detailed bibliographical comments and some open questions are given after each chapter - Indicates connections between the content of the book and many other topics in mathematics and physics - Open questions are formulated and commented with the intention to attract attention of young mathematicians

Lectures on Elliptic Boundary Value Problems

Lectures on Elliptic Boundary Value Problems
Title Lectures on Elliptic Boundary Value Problems PDF eBook
Author Shmuel Agmon
Publisher American Mathematical Soc.
Pages 225
Release 2010-02-03
Genre Mathematics
ISBN 0821849107

Download Lectures on Elliptic Boundary Value Problems Book in PDF, Epub and Kindle

This book, which is a new edition of a book originally published in 1965, presents an introduction to the theory of higher-order elliptic boundary value problems. The book contains a detailed study of basic problems of the theory, such as the problem of existence and regularity of solutions of higher-order elliptic boundary value problems. It also contains a study of spectral properties of operators associated with elliptic boundary value problems. Weyl's law on the asymptotic distribution of eigenvalues is studied in great generality.

High-Precision Methods in Eigenvalue Problems and Their Applications

High-Precision Methods in Eigenvalue Problems and Their Applications
Title High-Precision Methods in Eigenvalue Problems and Their Applications PDF eBook
Author Leonid D. Akulenko
Publisher CRC Press
Pages 260
Release 2004-10-15
Genre Science
ISBN 113439022X

Download High-Precision Methods in Eigenvalue Problems and Their Applications Book in PDF, Epub and Kindle

This book presents a survey of analytical, asymptotic, numerical, and combined methods of solving eigenvalue problems. It considers the new method of accelerated convergence for solving problems of the Sturm-Liouville type as well as boundary-value problems with boundary conditions of the first, second, and third kind. The authors also present high