Nilpotent Orbits In Semisimple Lie Algebra

Nilpotent Orbits In Semisimple Lie Algebra
Title Nilpotent Orbits In Semisimple Lie Algebra PDF eBook
Author William.M. McGovern
Publisher Routledge
Pages 201
Release 2017-10-19
Genre Mathematics
ISBN 1351428691

Download Nilpotent Orbits In Semisimple Lie Algebra Book in PDF, Epub and Kindle

Through the 1990s, a circle of ideas emerged relating three very different kinds of objects associated to a complex semisimple Lie algebra: nilpotent orbits, representations of a Weyl group, and primitive ideals in an enveloping algebra. The principal aim of this book is to collect together the important results concerning the classification and properties of nilpotent orbits, beginning from the common ground of basic structure theory. The techniques used are elementary and in the toolkit of any graduate student interested in the harmonic analysis of representation theory of Lie groups. The book develops the Dynkin-Konstant and Bala-Carter classifications of complex nilpotent orbits, derives the Lusztig-Spaltenstein theory of induction of nilpotent orbits, discusses basic topological questions, and classifies real nilpotent orbits. The classical algebras are emphasized throughout; here the theory can be simplified by using the combinatorics of partitions and tableaux. The authors conclude with a survey of advanced topics related to the above circle of ideas. This book is the product of a two-quarter course taught at the University of Washington.

Kahler Spaces, Nilpotent Orbits, and Singular Reduction

Kahler Spaces, Nilpotent Orbits, and Singular Reduction
Title Kahler Spaces, Nilpotent Orbits, and Singular Reduction PDF eBook
Author Johannes Huebschmann
Publisher American Mathematical Soc.
Pages 110
Release 2004
Genre Mathematics
ISBN 0821835726

Download Kahler Spaces, Nilpotent Orbits, and Singular Reduction Book in PDF, Epub and Kindle

For a stratified symplectic space, a suitable concept of stratified Kahler polarization encapsulates Kahler polarizations on the strata and the behaviour of the polarizations across the strata and leads to the notion of stratified Kahler space which establishes an intimate relationship between nilpotent orbits, singular reduction, invariant theory, reductive dual pairs, Jordan triple systems, symmetric domains, and pre-homogeneous spaces: The closure of a holomorphic nilpotent orbit or, equivalently, the closure of the stratum of the associated pre-homogeneous space of parabolic type carries a (positive) normal Kahler structure. In the world of singular Poisson geometry, the closures of principal holomorphic nilpotent orbits, positive definite hermitian JTS's, and certain pre-homogeneous spaces appear as different incarnations of the same structure. The closure of the principal holomorphic nilpotent orbit arises from a semisimple holomorphic orbit by contraction. Symplectic reduction carries a positive Kahler manifold to a positive normal Kahler space in such a way that the sheaf of germs of polarized functions coincides with the ordinary sheaf of germs of holomorphic functions. Symplectic reduction establishes a close relationship between singular reduced spaces and nilpotent orbits of the dual groups. Projectivization of holomorphic nilpotent orbits yields exotic (positive) stratified Kahler structures on complex projective spaces and on certain complex projective varieties including complex projective quadrics. The space of (in general twisted) representations of the fundamental group of a closed surface in a compact Lie group or, equivalently, a moduli space of central Yang-Mills connections on a principal bundle over a surface, inherits a (positive) normal (stratified) Kahler structure. Physical examples are provided by certain reduced spaces arising from angular momentum zero.

Lie Groups and Invariant Theory

Lie Groups and Invariant Theory
Title Lie Groups and Invariant Theory PDF eBook
Author Ėrnest Borisovich Vinberg
Publisher American Mathematical Soc.
Pages 284
Release 2005
Genre Computers
ISBN 9780821837337

Download Lie Groups and Invariant Theory Book in PDF, Epub and Kindle

This volume, devoted to the 70th birthday of A. L. Onishchik, contains a collection of articles by participants in the Moscow Seminar on Lie Groups and Invariant Theory headed by E. B. Vinberg and A. L. Onishchik. The book is suitable for graduate students and researchers interested in Lie groups and related topics.

Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action

Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action
Title Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action PDF eBook
Author A. Bialynicki-Birula
Publisher Springer Science & Business Media
Pages 248
Release 2013-03-09
Genre Mathematics
ISBN 3662050714

Download Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action Book in PDF, Epub and Kindle

This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups". The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.

Representations and Nilpotent Orbits of Lie Algebraic Systems

Representations and Nilpotent Orbits of Lie Algebraic Systems
Title Representations and Nilpotent Orbits of Lie Algebraic Systems PDF eBook
Author Maria Gorelik
Publisher Springer Nature
Pages 563
Release 2019-10-18
Genre Mathematics
ISBN 3030235319

Download Representations and Nilpotent Orbits of Lie Algebraic Systems Book in PDF, Epub and Kindle

This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.

Geometry of Moduli Spaces and Representation Theory

Geometry of Moduli Spaces and Representation Theory
Title Geometry of Moduli Spaces and Representation Theory PDF eBook
Author Roman Bezrukavnikov
Publisher American Mathematical Soc.
Pages 449
Release 2017-12-15
Genre Mathematics
ISBN 1470435748

Download Geometry of Moduli Spaces and Representation Theory Book in PDF, Epub and Kindle

This book is based on lectures given at the Graduate Summer School of the 2015 Park City Mathematics Institute program “Geometry of moduli spaces and representation theory”, and is devoted to several interrelated topics in algebraic geometry, topology of algebraic varieties, and representation theory. Geometric representation theory is a young but fast developing research area at the intersection of these subjects. An early profound achievement was the famous conjecture by Kazhdan–Lusztig about characters of highest weight modules over a complex semi-simple Lie algebra, and its subsequent proof by Beilinson-Bernstein and Brylinski-Kashiwara. Two remarkable features of this proof have inspired much of subsequent development: intricate algebraic data turned out to be encoded in topological invariants of singular geometric spaces, while proving this fact required deep general theorems from algebraic geometry. Another focus of the program was enumerative algebraic geometry. Recent progress showed the role of Lie theoretic structures in problems such as calculation of quantum cohomology, K-theory, etc. Although the motivation and technical background of these constructions is quite different from that of geometric Langlands duality, both theories deal with topological invariants of moduli spaces of maps from a target of complex dimension one. Thus they are at least heuristically related, while several recent works indicate possible strong technical connections. The main goal of this collection of notes is to provide young researchers and experts alike with an introduction to these areas of active research and promote interaction between the two related directions.

Israel Journal of Mathematics

Israel Journal of Mathematics
Title Israel Journal of Mathematics PDF eBook
Author
Publisher
Pages 782
Release 1963
Genre Electronic journals
ISBN

Download Israel Journal of Mathematics Book in PDF, Epub and Kindle