Navier-Stokes Equations and Nonlinear Functional Analysis

Navier-Stokes Equations and Nonlinear Functional Analysis
Title Navier-Stokes Equations and Nonlinear Functional Analysis PDF eBook
Author Roger Temam
Publisher SIAM
Pages 155
Release 1995-01-01
Genre Technology & Engineering
ISBN 9781611970050

Download Navier-Stokes Equations and Nonlinear Functional Analysis Book in PDF, Epub and Kindle

This second edition, like the first, attempts to arrive as simply as possible at some central problems in the Navier-Stokes equations in the following areas: existence, uniqueness, and regularity of solutions in space dimensions two and three; large time behavior of solutions and attractors; and numerical analysis of the Navier-Stokes equations. Since publication of the first edition of these lectures in 1983, there has been extensive research in the area of inertial manifolds for Navier-Stokes equations. These developments are addressed in a new section devoted entirely to inertial manifolds. Inertial manifolds were first introduced under this name in 1985 and, since then, have been systematically studied for partial differential equations of the Navier-Stokes type. Inertial manifolds are a global version of central manifolds. When they exist they encompass the complete dynamics of a system, reducing the dynamics of an infinite system to that of a smooth, finite-dimensional one called the inertial system. Although the theory of inertial manifolds for Navier-Stokes equations is not complete at this time, there is already a very interesting and significant set of results which deserves to be known, in the hope that it will stimulate further research in this area. These results are reported in this edition.

Applied Analysis of the Navier-Stokes Equations

Applied Analysis of the Navier-Stokes Equations
Title Applied Analysis of the Navier-Stokes Equations PDF eBook
Author Charles R. Doering
Publisher Cambridge University Press
Pages 236
Release 1995
Genre Mathematics
ISBN 9780521445689

Download Applied Analysis of the Navier-Stokes Equations Book in PDF, Epub and Kindle

This introductory physical and mathematical presentation of the Navier-Stokes equations focuses on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion.

Nonlinear Functional Analysis

Nonlinear Functional Analysis
Title Nonlinear Functional Analysis PDF eBook
Author Jacob T. Schwartz
Publisher CRC Press
Pages 248
Release 1969
Genre Mathematics
ISBN 9780677015002

Download Nonlinear Functional Analysis Book in PDF, Epub and Kindle

The Navier-Stokes Equations

The Navier-Stokes Equations
Title The Navier-Stokes Equations PDF eBook
Author Hermann Sohr
Publisher Springer Science & Business Media
Pages 376
Release 2012-12-13
Genre Mathematics
ISBN 3034805519

Download The Navier-Stokes Equations Book in PDF, Epub and Kindle

The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.

Linear and Nonlinear Functional Analysis with Applications

Linear and Nonlinear Functional Analysis with Applications
Title Linear and Nonlinear Functional Analysis with Applications PDF eBook
Author Philippe G. Ciarlet
Publisher SIAM
Pages 847
Release 2013-10-10
Genre Mathematics
ISBN 1611972582

Download Linear and Nonlinear Functional Analysis with Applications Book in PDF, Epub and Kindle

This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis.

Contributions to Nonlinear Functional Analysis

Contributions to Nonlinear Functional Analysis
Title Contributions to Nonlinear Functional Analysis PDF eBook
Author Eduardo H. Zarantonello
Publisher Academic Press
Pages 687
Release 2014-05-10
Genre Mathematics
ISBN 1483266621

Download Contributions to Nonlinear Functional Analysis Book in PDF, Epub and Kindle

Contributions to Nonlinear Functional Analysis contains the proceedings of a Symposium on Nonlinear Functional Analysis, held in Madison, Wisconsin, on April 12-14, 1971, under the sponsorship of the University of Wisconsin's Mathematics Research Center. The symposium provided a forum for discussing various topics related to nonlinear functional analysis, from transversality in nonlinear eigenvalue problems to monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Comprised of 15 chapters, this book begins by presenting an extension of Leray-Schauder degree and an application to a nonlinear elliptic boundary value problem. The discussion then turns to the use of degree theory to prove the existence of global continua of solutions of nonlinear eigenvalue problems; transversality in nonlinear eigenvalue problems; and how variational structure can be used to study some local questions in bifurcation theory. Subsequent chapters deal with the notion of monotone operators and monotonicity theory; a nonlinear version of the Hille-Yosida theorem; a version of the penalty method for the Navier-Stokes equations; and various types of weak solutions for minimizing problems in the spirit of duality theory for convex functionals. This monograph will be of interest to students and practitioners in the field of mathematics who want to learn more about nonlinear functional analysis.

Navier–Stokes Equations

Navier–Stokes Equations
Title Navier–Stokes Equations PDF eBook
Author Grzegorz Łukaszewicz
Publisher Springer
Pages 395
Release 2016-04-12
Genre Mathematics
ISBN 331927760X

Download Navier–Stokes Equations Book in PDF, Epub and Kindle

This volume is devoted to the study of the Navier–Stokes equations, providing a comprehensive reference for a range of applications: from advanced undergraduate students to engineers and professional mathematicians involved in research on fluid mechanics, dynamical systems, and mathematical modeling. Equipped with only a basic knowledge of calculus, functional analysis, and partial differential equations, the reader is introduced to the concept and applications of the Navier–Stokes equations through a series of fully self-contained chapters. Including lively illustrations that complement and elucidate the text, and a collection of exercises at the end of each chapter, this book is an indispensable, accessible, classroom-tested tool for teaching and understanding the Navier–Stokes equations. Incompressible Navier–Stokes equations describe the dynamic motion (flow) of incompressible fluid, the unknowns being the velocity and pressure as functions of location (space) and time variables. A solution to these equations predicts the behavior of the fluid, assuming knowledge of its initial and boundary states. These equations are one of the most important models of mathematical physics: although they have been a subject of vivid research for more than 150 years, there are still many open problems due to the nature of nonlinearity present in the equations. The nonlinear convective term present in the equations leads to phenomena such as eddy flows and turbulence. In particular, the question of solution regularity for three-dimensional problem was appointed by Clay Institute as one of the Millennium Problems, the key problems in modern mathematics. The problem remains challenging and fascinating for mathematicians, and the applications of the Navier–Stokes equations range from aerodynamics (drag and lift forces), to the design of watercraft and hydroelectric power plants, to medical applications such as modeling the flow of blood in the circulatory system.