Nanoscale Semiconductors

Nanoscale Semiconductors
Title Nanoscale Semiconductors PDF eBook
Author Balwinder Raj
Publisher CRC Press
Pages 259
Release 2022-08-30
Genre Technology & Engineering
ISBN 1000637506

Download Nanoscale Semiconductors Book in PDF, Epub and Kindle

This reference text discusses conduction mechanism, structure construction, operation, performance evaluation and applications of nanoscale semiconductor materials and devices in VLSI circuits design. The text explains nano materials, devices, analysis of its design parameters to meet the sub-nano-regime challenges for CMOS devices. It discusses important topics including memory design and testing, fin field-effect transistor (FinFET), tunnel field-effect transistor (TFET) for sensors design, carbon nanotube field-effect transistor (CNTFET) for memory design, nanowire and nanoribbons, nano devices based low-power-circuit design, and microelectromechanical systems (MEMS) design. The book discusses nanoscale semiconductor materials, device models, and circuit design covers nanoscale semiconductor device structures and modeling discusses novel nano-semiconductor devices such as FinFET, CNTFET, and Nanowire covers power dissipation and reduction techniques Discussing innovative nanoscale semiconductor device structures and modeling, this text will be useful for graduate students, and academic researchers in diverse areas such as electrical engineering, electronics and communication engineering, nanoscience, and nanotechnology. It covers nano devices based low-power-circuit design, nanoscale devices based digital VLSI circuits, and novel devices based analog VLSI circuits design.

Noise in Nanoscale Semiconductor Devices

Noise in Nanoscale Semiconductor Devices
Title Noise in Nanoscale Semiconductor Devices PDF eBook
Author Tibor Grasser
Publisher Springer Nature
Pages 724
Release 2020-04-26
Genre Technology & Engineering
ISBN 3030375005

Download Noise in Nanoscale Semiconductor Devices Book in PDF, Epub and Kindle

This book summarizes the state-of-the-art, regarding noise in nanometer semiconductor devices. Readers will benefit from this leading-edge research, aimed at increasing reliability based on physical microscopic models. Authors discuss the most recent developments in the understanding of point defects, e.g. via ab initio calculations or intricate measurements, which have paved the way to more physics-based noise models which are applicable to a wider range of materials and features, e.g. III-V materials, 2D materials, and multi-state defects. Describes the state-of-the-art, regarding noise in nanometer semiconductor devices; Enables readers to design more reliable semiconductor devices; Offers the most up-to-date information on point defects, based on physical microscopic models.

Semiconductor Physics

Semiconductor Physics
Title Semiconductor Physics PDF eBook
Author Sandip Tiwari
Publisher Oxford University Press, USA
Pages 832
Release 2020
Genre Science
ISBN 019875986X

Download Semiconductor Physics Book in PDF, Epub and Kindle

This text brings together traditional solid-state approaches from the 20th century with developments of the early part of the 21st century, to reach an understanding of semiconductor physics in its multifaceted forms. It reveals how an understanding of what happens within the material can lead to insights into what happens in its use.

Nanoscale Compound Semiconductors and their Optoelectronics Applications

Nanoscale Compound Semiconductors and their Optoelectronics Applications
Title Nanoscale Compound Semiconductors and their Optoelectronics Applications PDF eBook
Author Vijay B. Pawade
Publisher Woodhead Publishing
Pages 461
Release 2022-01-21
Genre Technology & Engineering
ISBN 0128240636

Download Nanoscale Compound Semiconductors and their Optoelectronics Applications Book in PDF, Epub and Kindle

Nanoscale Compound Semiconductors and their Optoelectronics Applications provides the basic and fundamental properties of nanoscale compound semiconductors and their role in modern technological products. The book discusses all important properties of this important category of materials such as their optical properties, size-dependent properties, and tunable properties. Key methods are reviewed, including synthesis techniques and characterization strategies. The role of compound semiconductors in the advancement of energy efficient optoelectronics and solar cell devices is also discussed. The book also touches on the photocatalytic property of the materials by doping with graphene oxides--an emerging and new pathway. Covers all relevant types of nanoscale compound semiconductors for optoelectronics, including their synthesis, properties and applications Provides historical context and review of emerging trends in semiconductor technology, particularly emphasizing advances in non-toxic semiconductor materials for green technologies Reviews emerging applications of nanoscale compound semiconductor-based devices in optoelectronics, energy and environmental sustainability

Stress and Strain Engineering at Nanoscale in Semiconductor Devices

Stress and Strain Engineering at Nanoscale in Semiconductor Devices
Title Stress and Strain Engineering at Nanoscale in Semiconductor Devices PDF eBook
Author Chinmay K. Maiti
Publisher CRC Press
Pages 275
Release 2021-06-29
Genre Science
ISBN 1000404935

Download Stress and Strain Engineering at Nanoscale in Semiconductor Devices Book in PDF, Epub and Kindle

Anticipating a limit to the continuous miniaturization (More-Moore), intense research efforts are being made to co-integrate various functionalities (More-than-Moore) in a single chip. Currently, strain engineering is the main technique used to enhance the performance of advanced semiconductor devices. Written from an engineering applications standpoint, this book encompasses broad areas of semiconductor devices involving the design, simulation, and analysis of Si, heterostructure silicongermanium (SiGe), and III-N compound semiconductor devices. The book provides the background and physical insight needed to understand the new and future developments in the technology CAD (TCAD) design at the nanoscale. Features Covers stressstrain engineering in semiconductor devices, such as FinFETs and III-V Nitride-based devices Includes comprehensive mobility model for strained substrates in global and local strain techniques and their implementation in device simulations Explains the development of strain/stress relationships and their effects on the band structures of strained substrates Uses design of experiments to find the optimum process conditions Illustrates the use of TCAD for modeling strain-engineered FinFETs for DC and AC performance predictions This book is for graduate students and researchers studying solid-state devices and materials, microelectronics, systems and controls, power electronics, nanomaterials, and electronic materials and devices.

Nanoscale Semiconductor Lasers

Nanoscale Semiconductor Lasers
Title Nanoscale Semiconductor Lasers PDF eBook
Author Cunzhu Tong
Publisher Elsevier
Pages 206
Release 2019-08-06
Genre Science
ISBN 0128141638

Download Nanoscale Semiconductor Lasers Book in PDF, Epub and Kindle

Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies. Provides an overview of the active field of nanostructured lasers, illustrating the latest topics and applications Demonstrates how to connect different classes of material to specific applications Gives an overview of several approaches to confine and control light emission and amplification using nanostructured materials and nano-scale cavities

Nanoscale Semiconductor Memories

Nanoscale Semiconductor Memories
Title Nanoscale Semiconductor Memories PDF eBook
Author Santosh K. Kurinec
Publisher CRC Press
Pages 448
Release 2017-07-28
Genre Technology & Engineering
ISBN 1466560614

Download Nanoscale Semiconductor Memories Book in PDF, Epub and Kindle

Nanoscale memories are used everywhere. From your iPhone to a supercomputer, every electronic device contains at least one such type. With coverage of current and prototypical technologies, Nanoscale Semiconductor Memories: Technology and Applications presents the latest research in the field of nanoscale memories technology in one place. It also covers a myriad of applications that nanoscale memories technology has enabled. The book begins with coverage of SRAM, addressing the design challenges as the technology scales, then provides design strategies to mitigate radiation induced upsets in SRAM. It discusses the current state-of-the-art DRAM technology and the need to develop high performance sense amplifier circuitry. The text then covers the novel concept of capacitorless 1T DRAM, termed as Advanced-RAM or A-RAM, and presents a discussion on quantum dot (QD) based flash memory. Building on this foundation, the coverage turns to STT-RAM, emphasizing scalable embedded STT-RAM, and the physics and engineering of magnetic domain wall "racetrack" memory. The book also discusses state-of-the-art modeling applied to phase change memory devices and includes an extensive review of RRAM, highlighting the physics of operation and analyzing different materials systems currently under investigation. The hunt is still on for universal memory that fits all the requirements of an "ideal memory" capable of high-density storage, low-power operation, unparalleled speed, high endurance, and low cost. Taking an interdisciplinary approach, this book bridges technological and application issues to provide the groundwork for developing custom designed memory systems.