Nanoscale Devices - Fundamentals and Applications
Title | Nanoscale Devices - Fundamentals and Applications PDF eBook |
Author | Rudolf Gross |
Publisher | Springer Science & Business Media |
Pages | 399 |
Release | 2007-05-16 |
Genre | Technology & Engineering |
ISBN | 1402051077 |
This book collects papers on the fundamentals and applications of nanoscale devices, first presented at the NATO Advanced Research Workshop on Nanoscale Devices – Fundamentals and Applications held in Kishinev, Moldova, in September 2004. The focus is on the synthesis and characterization of nanoscale magnetic materials; fundamental physics and materials aspects of solid-state nanostructures; development of novel device concepts and design principles for nanoscale devices; and on applications in electronics with emphasis on defence against the threat of terrorism.
Nanoscale Devices - Fundamentals and Applications
Title | Nanoscale Devices - Fundamentals and Applications PDF eBook |
Author | Rudolf Gross |
Publisher | Springer |
Pages | 378 |
Release | 2006-06-29 |
Genre | Technology & Engineering |
ISBN | 9781402051050 |
This book collects papers on the fundamentals and applications of nanoscale devices, first presented at the NATO Advanced Research Workshop on Nanoscale Devices – Fundamentals and Applications held in Kishinev, Moldova, in September 2004. The focus is on the synthesis and characterization of nanoscale magnetic materials; fundamental physics and materials aspects of solid-state nanostructures; development of novel device concepts and design principles for nanoscale devices; and on applications in electronics with emphasis on defence against the threat of terrorism.
Nanoscale Electronic Devices and Their Applications
Title | Nanoscale Electronic Devices and Their Applications PDF eBook |
Author | Khurshed Ahmad Shah |
Publisher | CRC Press |
Pages | 265 |
Release | 2020-08-03 |
Genre | Science |
ISBN | 1000163563 |
Nanoscale Electronic Devices and Their Applications helps readers acquire a thorough understanding of the fundamentals of solids at the nanoscale level in addition to their applications including operation and properties of recent nanoscale devices. This book includes seven chapters that give an overview of electrons in solids, carbon nanotube devices and their applications, doping techniques, construction and operational details of channel-engineered MOSFETs, and spintronic devices and their applications. Structural and operational features of phase-change memory (PCM), memristor, and resistive random-access memory (ReRAM) are also discussed. In addition, some applications of these phase-change devices to logic designs have been presented. Aimed at senior undergraduate students in electrical engineering, micro-electronics engineering, physics, and device physics, this book: Covers a wide area of nanoscale devices while explaining the fundamental physics in these devices Reviews information on CNT two- and three-probe devices, spintronic devices, CNT interconnects, CNT memories, and NDR in CNT FETs Discusses spin-controlled devices and their applications, multi-material devices, and gates in addition to phase-change devices Includes rigorous mathematical derivations of the semiconductor physics Illustrates major concepts thorough discussions and various diagrams
Nanoscale Devices
Title | Nanoscale Devices PDF eBook |
Author | Brajesh Kumar Kaushik |
Publisher | CRC Press |
Pages | 414 |
Release | 2018-11-16 |
Genre | Science |
ISBN | 1351670212 |
The primary aim of this book is to discuss various aspects of nanoscale device design and their applications including transport mechanism, modeling, and circuit applications. . Provides a platform for modeling and analysis of state-of-the-art devices in nanoscale regime, reviews issues related to optimizing the sub-nanometer device performance and addresses simulation aspect and/or fabrication process of devices Also, includes design problems at the end of each chapter
Theoretical Foundations of Nanoscale Quantum Devices
Title | Theoretical Foundations of Nanoscale Quantum Devices PDF eBook |
Author | Malin Premaratne |
Publisher | Cambridge University Press |
Pages | 299 |
Release | 2021-01-07 |
Genre | Science |
ISBN | 1108475663 |
This self-contained text describes the underlying theory and approximate quantum models of real nanodevices for nanotechnology applications.
Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications
Title | Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications PDF eBook |
Author | Yosi Shacham-Diamand |
Publisher | Springer Science & Business Media |
Pages | 545 |
Release | 2009-09-19 |
Genre | Science |
ISBN | 0387958681 |
In Advanced ULSI interconnects – fundamentals and applications we bring a comprehensive description of copper-based interconnect technology for ultra-lar- scale integration (ULSI) technology for integrated circuit (IC) application. In- grated circuit technology is the base for all modern electronics systems. You can ?nd electronics systems today everywhere: from toys and home appliances to a- planes and space shuttles. Electronics systems form the hardware that together with software are the bases of the modern information society. The rapid growth and vast exploitation of modern electronics system create a strong demand for new and improved electronic circuits as demonstrated by the amazing progress in the ?eld of ULSI technology. This progress is well described by the famous “Moore’s law” which states, in its most general form, that all the metrics that describe integrated circuit performance (e. g. , speed, number of devices, chip area) improve expon- tially as a function of time. For example, the number of components per chip d- bles every 18 months and the critical dimension on a chip has shrunk by 50% every 2 years on average in the last 30 years. This rapid growth in integrated circuits te- nology results in highly complex integrated circuits with an increasing number of interconnects on chips and between the chip and its package. The complexity of the interconnect network on chips involves an increasing number of metal lines per interconnect level, more interconnect levels, and at the same time a reduction in the interconnect line critical dimensions.
Nanofabrication
Title | Nanofabrication PDF eBook |
Author | Ampere A. Tseng |
Publisher | World Scientific |
Pages | 583 |
Release | 2008 |
Genre | Technology & Engineering |
ISBN | 9812790896 |
Many of the devices and systems used in modern industry are becoming progressively smaller and have reached the nanoscale domain. Nanofabrication aims at building nanoscale structures, which can act as components, devices, or systems, in large quantities at potentially low cost. Nanofabrication is vital to all nanotechnology fields, especially for the realization of nanotechnology that involves the traditional areas across engineering and science. This is the first book solely dedicated to the manufacturing technology in nanoscale structures, devices, and systems and is designed to satisfy the growing demands of researchers, professionals, and graduate students. Both conventional and non-conventional fabrication technologies are introduced with emphasis on multidisciplinary principles, methodologies, and practical applications. While conventional technologies consider the emerging techniques developed for next generation lithography, non-conventional techniques include scanning probe microscopy lithography, self-assembly, and imprint lithography, as well as techniques specifically developed for making carbon tubes and molecular circuits and devices. Sample Chapter(s). Chapter 1: Atom, Molecule, and Nanocluster Manipulations for Nanostructure Fabrication Using Scanning Probe Microscopy (3,320 KB). Contents: Atomic Force Microscope Lithography (N Kawasegi et al.); Nanowire Assembly and Integration (Z Gu & D H Gracias); Extreme Ultraviolet Lithography (H Kinoshita); Electron Projection Lithography (T Miura et al.); Electron Beam Direct Writing (K Yamazaki); Electron Beam Induced Deposition (K Mitsuishi); Focused Ion Beams and Interaction with Solids (T Ishitani et al.); Nanofabrication of Nanoelectromechanical Systems (NEMS): Emerging Techniques (K L Ekinci & J Brugger); and other papers. Readership: Researchers, professionals, and graduate students in the fields of nanoengineering and nanoscience.