Multiphysics Modelling of Fluid-Particulate Systems

Multiphysics Modelling of Fluid-Particulate Systems
Title Multiphysics Modelling of Fluid-Particulate Systems PDF eBook
Author Hassan Khawaja
Publisher Academic Press
Pages 382
Release 2020-03-18
Genre Technology & Engineering
ISBN 0128183454

Download Multiphysics Modelling of Fluid-Particulate Systems Book in PDF, Epub and Kindle

Multiphysics Modelling of Fluid-Particulate Systems provides an explanation of how to model fluid-particulate systems using Eulerian and Lagrangian methods. The computational cost and relative merits of the different methods are compared, with recommendations on where and how to apply them provided. The science underlying the fluid-particulate phenomena involves computational fluid dynamics (for liquids and gases), computational particle dynamics (solids), and mass and heat transfer. In order to simulate these systems, it is essential to model the interactions between phases and the fluids and particles themselves. This book details instructions for several numerical methods of dealing with this complex problem. This book is essential reading for researchers from all backgrounds interested in multiphase flows or fluid-solid modeling, as well as engineers working on related problems in chemical engineering, food science, process engineering, geophysics or metallurgical processing.

Multiphysics Modelling of Fluid-Particulate Systems

Multiphysics Modelling of Fluid-Particulate Systems
Title Multiphysics Modelling of Fluid-Particulate Systems PDF eBook
Author Hassan Khawaja
Publisher Academic Press
Pages 384
Release 2020-03-14
Genre Technology & Engineering
ISBN 0128183462

Download Multiphysics Modelling of Fluid-Particulate Systems Book in PDF, Epub and Kindle

Multiphysics Modelling of Fluid-Particulate Systems provides an explanation of how to model fluid-particulate systems using Eulerian and Lagrangian methods. The computational cost and relative merits of the different methods are compared, with recommendations on where and how to apply them provided. The science underlying the fluid-particulate phenomena involves computational fluid dynamics (for liquids and gases), computational particle dynamics (solids), and mass and heat transfer. In order to simulate these systems, it is essential to model the interactions between phases and the fluids and particles themselves. This book details instructions for several numerical methods of dealing with this complex problem. This book is essential reading for researchers from all backgrounds interested in multiphase flows or fluid-solid modeling, as well as engineers working on related problems in chemical engineering, food science, process engineering, geophysics or metallurgical processing. - Provides detailed coverage of Resolved and Unresolved Computational Fluid Dynamics - Discrete Element Method (CFD-DEM), Smoothed Particle Hydrodynamics, and their various attributes - Gives an excellent summary of a range of simulation techniques and provides numerical examples - Starts with a broad introduction to fluid-particulate systems to help readers from a range of disciplines grasp fundamental principles

CFD Modeling of Complex Chemical Processes

CFD Modeling of Complex Chemical Processes
Title CFD Modeling of Complex Chemical Processes PDF eBook
Author Li Xi
Publisher MDPI
Pages 296
Release 2021-09-01
Genre Technology & Engineering
ISBN 3036512667

Download CFD Modeling of Complex Chemical Processes Book in PDF, Epub and Kindle

Computational fluid dynamics (CFD), which uses numerical analysis to predict and model complex flow behaviors and transport processes, has become a mainstream tool in engineering process research and development. Complex chemical processes often involve coupling between dynamics at vastly different length and time scales, as well as coupling of different physical models. The multiscale and multiphysics nature of those problems calls for delicate modeling approaches. This book showcases recent contributions in this field, from the development of modeling methodology to its application in supporting the design, development, and optimization of engineering processes.

Computational Methods for Multiphase Flow

Computational Methods for Multiphase Flow
Title Computational Methods for Multiphase Flow PDF eBook
Author Andrea Prosperetti
Publisher Cambridge University Press
Pages 392
Release 2009-06-25
Genre Mathematics
ISBN 1139459902

Download Computational Methods for Multiphase Flow Book in PDF, Epub and Kindle

Thanks to high-speed computers and advanced algorithms, the important field of modelling multiphase flows is an area of rapid growth. This one-stop account – now in paperback, with corrections from the first printing – is the ideal way to get to grips with this topic, which has significant applications in industry and nature. Each chapter is written by an acknowledged expert and includes extensive references to current research. All of the chapters are essentially independent and so the book can be used for a range of advanced courses and the self-study of specific topics. No other book covers so many topics related to multiphase flow, and it will therefore be warmly welcomed by researchers and graduate students of the subject across engineering, physics, and applied mathematics.

Particulate Flows

Particulate Flows
Title Particulate Flows PDF eBook
Author Donald A. Drew
Publisher Springer Science & Business Media
Pages 155
Release 2012-12-06
Genre Mathematics
ISBN 1468471090

Download Particulate Flows Book in PDF, Epub and Kindle

This IMA Volume in Mathematics and its Applications PARTICULATE FLOWS: PROCESSING AND RHEOLOGY is based on the proceedings of a very successful one-week workshop with the same title, which was an integral part of the 1995-1996 IMA program on "Mathematical Methods in Materials Science." We would like to thank Donald A. Drew, Daniel D. Joseph, and Stephen L. Passman for their excellent work as organizers of the meeting. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO) and the Office of Naval Research (ONR), whose financial support made the workshop possible. A vner Friedman Robert Gulliver v PREFACE The workshop on Particulate Flows: Processing and Rheology was held January 8-12, 1996 at the Institute for Mathematics and its Applications on the University of Minnesota Twin Cities campus as part of the 1995- 96 Program on Mathematical Methods in Materials Science. There were about forty participants, and some lively discussions, in spite of the fact that bad weather on the east coast kept some participants from attending, and caused scheduling changes throughout the workshop. Heterogeneous materials can behave strangely, even in simple flow sit uations. For example, a mixture of solid particles in a liquid can exhibit behavior that seems solid-like or fluid-like, and attempting to measure the "viscosity" of such a mixture leads to contradictions and "unrepeatable" experiments. Even so, such materials are commonly used in manufacturing and processing.

Process Modelling and Simulation

Process Modelling and Simulation
Title Process Modelling and Simulation PDF eBook
Author César de Prada
Publisher MDPI
Pages 298
Release 2019-09-23
Genre Technology & Engineering
ISBN 3039214551

Download Process Modelling and Simulation Book in PDF, Epub and Kindle

Since process models are nowadays ubiquitous in many applications, the challenges and alternatives related to their development, validation, and efficient use have become more apparent. In addition, the massive amounts of both offline and online data available today open the door for new applications and solutions. However, transforming data into useful models and information in the context of the process industry or of bio-systems requires specific approaches and considerations such as new modelling methodologies incorporating the complex, stochastic, hybrid and distributed nature of many processes in particular. The same can be said about the tools and software environments used to describe, code, and solve such models for their further exploitation. Going well beyond mere simulation tools, these advanced tools offer a software suite built around the models, facilitating tasks such as experiment design, parameter estimation, model initialization, validation, analysis, size reduction, discretization, optimization, distributed computation, co-simulation, etc. This Special Issue collects novel developments in these topics in order to address the challenges brought by the use of models in their different facets, and to reflect state of the art developments in methods, tools and industrial applications.

Particle Methods for Multi-Scale and Multi-physics

Particle Methods for Multi-Scale and Multi-physics
Title Particle Methods for Multi-Scale and Multi-physics PDF eBook
Author Moubin E. T. Al LIU
Publisher World Scientific
Pages 400
Release 2015-12-28
Genre Science
ISBN 9814571709

Download Particle Methods for Multi-Scale and Multi-physics Book in PDF, Epub and Kindle

Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences --