Multiphysics Modeling with Application to Biomedical Engineering
Title | Multiphysics Modeling with Application to Biomedical Engineering PDF eBook |
Author | Z. Yang |
Publisher | CRC Press |
Pages | 175 |
Release | 2020-07-22 |
Genre | Mathematics |
ISBN | 1000088871 |
The aim of this book is to introduce the simulation of various physical fields and their applications for biomedical engineering, which will provide a base for researchers in the biomedical field to conduct further investigation. The entire book is classified into three levels. It starts with the first level, which presents the single physical fields including structural analysis, fluid simulation, thermal analysis, and acoustic modeling. Then, the second level consists of various couplings between two physical fields covering structural thermal coupling, porous media, fluid structural interaction (FSI), and acoustic FSI. The third level focuses on multi-coupling that coupling with more than two physical fields in the model. Each part in all levels is organized as the physical feature, finite element implementation, modeling procedure in ANSYS, and the specific applications for biomedical engineering like the FSI study of Abdominal Aortic Aneurysm (AAA), acoustic wave transmission in the ear, and heat generation of the breast tumor. The book should help for the researchers and graduate students conduct numerical simulation of various biomedical coupling problems. It should also provide all readers with a better understanding of various couplings.
Modelling Organs, Tissues, Cells and Devices
Title | Modelling Organs, Tissues, Cells and Devices PDF eBook |
Author | Socrates Dokos |
Publisher | Springer |
Pages | 504 |
Release | 2017-03-08 |
Genre | Technology & Engineering |
ISBN | 3642548016 |
This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.
Computational Modeling in Biomedical Engineering and Medical Physics
Title | Computational Modeling in Biomedical Engineering and Medical Physics PDF eBook |
Author | Alexandru Morega |
Publisher | Academic Press |
Pages | 320 |
Release | 2020-10-02 |
Genre | Science |
ISBN | 0128178973 |
Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies. Presents the fundamentals of mathematical and numerical modeling of engineering problems in medicine Discusses many of the most common modelling scenarios for Biomedical Engineering, including, electrical activity of the heart hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods Includes discussion of the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling, physics scaling, Constructal Law criteria in morphing shape and structure of systems with internal flows, computational domain construction, numerical modelling issues, and validation techniques used to ascertain numerical simulation results
Multiphysics Modeling: Numerical Methods and Engineering Applications
Title | Multiphysics Modeling: Numerical Methods and Engineering Applications PDF eBook |
Author | Qun Zhang |
Publisher | Elsevier |
Pages | 438 |
Release | 2015-12-15 |
Genre | Technology & Engineering |
ISBN | 0124077374 |
Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. - Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume - Provides a go-to resource for coupling and multiphysics problems - Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others - Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering
An Introduction to Modeling of Transport Processes
Title | An Introduction to Modeling of Transport Processes PDF eBook |
Author | Ashim Datta |
Publisher | Cambridge University Press |
Pages | 533 |
Release | 2010 |
Genre | Medical |
ISBN | 0521119243 |
Organised around problem solving, this book introduces the reader to computational simulation, bridging fundamental theory with real-world applications.
Introduction to Integrative Engineering
Title | Introduction to Integrative Engineering PDF eBook |
Author | Guigen Zhang |
Publisher | CRC Press |
Pages | 424 |
Release | 2017-03-03 |
Genre | Health & Fitness |
ISBN | 1315388456 |
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
Multiphysics Modeling Using COMSOL 5 and MATLAB
Title | Multiphysics Modeling Using COMSOL 5 and MATLAB PDF eBook |
Author | Roger W. Pryor |
Publisher | Mercury Learning and Information |
Pages | 743 |
Release | 2021-12-03 |
Genre | Technology & Engineering |
ISBN | 1683925882 |
COMSOL 5 and MATLAB are valuable software modeling tools for engineers and scientists. This updated edition includes five new models and explores a wide range of models in coordinate systems from 0D to 3D, introducing the numerical analysis techniques employed in COMSOL 5.6 and MATLAB software. The text presents electromagnetic, electronic, optical, thermal physics, and biomedical models as examples. It presents the fundamental concepts in the models and the step-by-step instructions needed to build each model. The companion files include all the built models for each step-by-step example presented in the text and the related animations, as specified. The book is designed to introduce modeling to an experienced engineer or can also be used for upper level undergraduate or graduate courses. FEATURES: Focuses on COMSOL 5.x and MATLAB models that demonstrate the use of concepts for later application in engineering, science, medicine, and biophysics for the development of devices and systems Includes companion files with executable copies of each model and related animations Includes detailed discussions of possible modeling errors and results Uses a step-by-step modeling methodology linked to the Fundamental Laws of Physics. The companion files are also available online by emailing the publisher with proof of purchase at [email protected].