Category Theory in Context
Title | Category Theory in Context PDF eBook |
Author | Emily Riehl |
Publisher | Courier Dover Publications |
Pages | 273 |
Release | 2017-03-09 |
Genre | Mathematics |
ISBN | 0486820807 |
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Categories and Sheaves
Title | Categories and Sheaves PDF eBook |
Author | Masaki Kashiwara |
Publisher | Springer Science & Business Media |
Pages | 496 |
Release | 2005-12-19 |
Genre | Mathematics |
ISBN | 3540279504 |
Categories and sheaves appear almost frequently in contemporary advanced mathematics. This book covers categories, homological algebra and sheaves in a systematic manner starting from scratch and continuing with full proofs to the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasizing inductive and projective limits, tensor categories, representable functors, ind-objects and localization.
Categories, Types, and Structures
Title | Categories, Types, and Structures PDF eBook |
Author | Andrea Asperti |
Publisher | MIT Press (MA) |
Pages | 330 |
Release | 1991 |
Genre | Computers |
ISBN |
Category theory is a mathematical subject whose importance in several areas of computer science, most notably the semantics of programming languages and the design of programmes using abstract data types, is widely acknowledged. This book introduces category theory at a level appropriate for computer scientists and provides practical examples in the context of programming language design.
Basic Concepts of Enriched Category Theory
Title | Basic Concepts of Enriched Category Theory PDF eBook |
Author | Gregory Maxwell Kelly |
Publisher | CUP Archive |
Pages | 260 |
Release | 1982-02-18 |
Genre | Mathematics |
ISBN | 9780521287029 |
Categories for the Working Mathematician
Title | Categories for the Working Mathematician PDF eBook |
Author | Saunders Mac Lane |
Publisher | Springer Science & Business Media |
Pages | 320 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 1475747217 |
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Elements of ∞-Category Theory
Title | Elements of ∞-Category Theory PDF eBook |
Author | Emily Riehl |
Publisher | Cambridge University Press |
Pages | 782 |
Release | 2022-02-10 |
Genre | Mathematics |
ISBN | 1108952194 |
The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.
Abstract and Concrete Categories
Title | Abstract and Concrete Categories PDF eBook |
Author | Jiri Adamek |
Publisher | |
Pages | 0 |
Release | 2009 |
Genre | Categories (Mathematics) |
ISBN | 9780486469348 |
This up-to-date introductory treatment employs category theory to explore the theory of structures. Its unique approach stresses concrete categories and presents a systematic view of factorization structures, offering a unifying perspective on earlier work and summarizing recent developments. Numerous examples, ranging from general to specific, illuminate the text. 1990 edition, updated 2004.