Moments, Positive Polynomials and Their Applications

Moments, Positive Polynomials and Their Applications
Title Moments, Positive Polynomials and Their Applications PDF eBook
Author Jean-Bernard Lasserre
Publisher World Scientific
Pages 384
Release 2010
Genre Mathematics
ISBN 1848164467

Download Moments, Positive Polynomials and Their Applications Book in PDF, Epub and Kindle

1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources

Moment and Polynomial Optimization

Moment and Polynomial Optimization
Title Moment and Polynomial Optimization PDF eBook
Author Jiawang Nie
Publisher SIAM
Pages 484
Release 2023-06-15
Genre Mathematics
ISBN 1611977606

Download Moment and Polynomial Optimization Book in PDF, Epub and Kindle

Moment and polynomial optimization is an active research field used to solve difficult questions in many areas, including global optimization, tensor computation, saddle points, Nash equilibrium, and bilevel programs, and it has many applications. The author synthesizes current research and applications, providing a systematic introduction to theory and methods, a comprehensive approach for extracting optimizers and solving truncated moment problems, and a creative methodology for using optimality conditions to construct tight Moment-SOS relaxations. This book is intended for applied mathematicians, engineers, and researchers entering the field. It can be used as a textbook for graduate students in courses on convex optimization, polynomial optimization, and matrix and tensor optimization.

Semidefinite Optimization and Convex Algebraic Geometry

Semidefinite Optimization and Convex Algebraic Geometry
Title Semidefinite Optimization and Convex Algebraic Geometry PDF eBook
Author Grigoriy Blekherman
Publisher SIAM
Pages 487
Release 2013-03-21
Genre Mathematics
ISBN 1611972280

Download Semidefinite Optimization and Convex Algebraic Geometry Book in PDF, Epub and Kindle

An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.

The Moment Problem

The Moment Problem
Title The Moment Problem PDF eBook
Author Konrad Schmüdgen
Publisher Springer
Pages 530
Release 2017-11-09
Genre Mathematics
ISBN 3319645463

Download The Moment Problem Book in PDF, Epub and Kindle

This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidimensional truncated moment problems. The Moment Problem will be particularly useful to graduate students and researchers working on moment problems, functional analysis, complex analysis, harmonic analysis, real algebraic geometry, polynomial optimization, or systems theory. With notes providing useful background information and exercises of varying difficulty illustrating the theory, this book will also serve as a reference on the subject and can be used for self-study.

Positive Polynomials and Sums of Squares

Positive Polynomials and Sums of Squares
Title Positive Polynomials and Sums of Squares PDF eBook
Author Murray Marshall
Publisher American Mathematical Soc.
Pages 201
Release 2008
Genre Mathematics
ISBN 0821844024

Download Positive Polynomials and Sums of Squares Book in PDF, Epub and Kindle

The study of positive polynomials brings together algebra, geometry and analysis. The subject is of fundamental importance in real algebraic geometry when studying the properties of objects defined by polynomial inequalities. Hilbert's 17th problem and its solution in the first half of the 20th century were landmarks in the early days of the subject. More recently, new connections to the moment problem and to polynomial optimization have been discovered. The moment problem relates linear maps on the multidimensional polynomial ring to positive Borel measures. This book provides an elementary introduction to positive polynomials and sums of squares, the relationship to the moment problem, and the application to polynomial optimization. The focus is on the exciting new developments that have taken place in the last 15 years, arising out of Schmudgen's solution to the moment problem in the compact case in 1991. The book is accessible to a well-motivated student at the beginning graduate level. The objects being dealt with are concrete and down-to-earth, namely polynomials in $n$ variables with real coefficients, and many examples are included. Proofs are presented as clearly and as simply as possible. Various new, simpler proofs appear in the book for the first time. Abstraction is employed only when it serves a useful purpose, but, at the same time, enough abstraction is included to allow the reader easy access to the literature. The book should be essential reading for any beginning student in the area.

An Introduction to Polynomial and Semi-Algebraic Optimization

An Introduction to Polynomial and Semi-Algebraic Optimization
Title An Introduction to Polynomial and Semi-Algebraic Optimization PDF eBook
Author Jean Bernard Lasserre
Publisher Cambridge University Press
Pages 355
Release 2015-02-19
Genre Mathematics
ISBN 1107060575

Download An Introduction to Polynomial and Semi-Algebraic Optimization Book in PDF, Epub and Kindle

The first comprehensive introduction to the powerful moment approach for solving global optimization problems.

Polynomial Optimization, Moments, and Applications

Polynomial Optimization, Moments, and Applications
Title Polynomial Optimization, Moments, and Applications PDF eBook
Author Michal Kočvara
Publisher Springer Nature
Pages 274
Release 2024-01-28
Genre Mathematics
ISBN 3031386590

Download Polynomial Optimization, Moments, and Applications Book in PDF, Epub and Kindle

Polynomial optimization is a fascinating field of study that has revolutionized the way we approach nonlinear problems described by polynomial constraints. The applications of this field range from production planning processes to transportation, energy consumption, and resource control. This introductory book explores the latest research developments in polynomial optimization, presenting the results of cutting-edge interdisciplinary work conducted by the European network POEMA. For the past four years, experts from various fields, including algebraists, geometers, computer scientists, and industrial actors, have collaborated in this network to create new methods that go beyond traditional paradigms of mathematical optimization. By exploiting new advances in algebra and convex geometry, these innovative approaches have resulted in significant scientific and technological advancements. This book aims to make these exciting developments accessible to a wider audience by gathering high-quality chapters on these hot topics. Aimed at both aspiring and established researchers, as well as industry professionals, this book will be an invaluable resource for anyone interested in polynomial optimization and its potential for real-world applications.