Modeling Peptide-Protein Interactions
Title | Modeling Peptide-Protein Interactions PDF eBook |
Author | Ora Schueler-Furman |
Publisher | Humana |
Pages | 0 |
Release | 2017-02-27 |
Genre | Science |
ISBN | 9781493967964 |
This volume covers an array of techniques available for studying peptide-protein docking and design. The book is divided into four sections: peptide binding site prediction; peptide-protein docking; prediction and design of peptide binding specificity; and the design of inhibitory peptides. The chapters in Modeling Peptide-Protein Interactions: Methods and Protocols cover topics such as the usage of ACCLUSTER and PeptiMap for peptide binding site prediction; AnchorDock and ATTRACT for blind, flexible docking of peptides to proteins; flexible peptide docking using HADDOCK and FlexPepDock; identifying loop-mediated protein-protein interactions using LoopFinder; and protein-peptide interaction design using PinaColada. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary details for successful application of the different approaches and step-by-step, readily reproducible protocols, as well as tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Modeling Peptide-Protein Interactions: Methods and Protocols provides a diverse and unified overview of this rapidly advancing field of major interest and applicability.
Homology Modeling
Title | Homology Modeling PDF eBook |
Author | Andrew J. W. Orry |
Publisher | Humana Press |
Pages | 419 |
Release | 2012-02-10 |
Genre | Science |
ISBN | 9781617795879 |
Knowledge about protein tertiary structure can guide experiments, assist in the understanding of structure-function relationships, and aid the design of new therapeutics for disease. Homology modeling is an in silico method that predicts the tertiary structure of an amino acid sequence based on a homologous experimentally determined structure. In, Homology Modelling: Methods and Protocols experts in the field describe each homology modeling step from first principles, provide case studies for challenging modeling targets and describe methods for the prediction of how other molecules such as drugs can interact with the protein. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Homology Modelling: Methods and Protocols guides scientists in the available homology modeling methods.
Protein Structure Prediction
Title | Protein Structure Prediction PDF eBook |
Author | David Webster |
Publisher | Springer Science & Business Media |
Pages | 425 |
Release | 2008-02-03 |
Genre | Science |
ISBN | 1592593682 |
The number of protein sequences grows each year, yet the number of structures deposited in the Protein Data Bank remains relatively small. The importance of protein structure prediction cannot be overemphasized, and this volume is a timely addition to the literature in this field. Protein Structure Prediction: Methods and Protocols is a departure from the normal Methods in Molecular Biology series format. By its very nature, protein structure prediction demands that there be a greater mix of theoretical and practical aspects than is normally seen in this series. This book is aimed at both the novice and the experienced researcher who wish for detailed inf- mation in the field of protein structure prediction; a major intention here is to include important information that is needed in the day-to-day work of a research scientist, important information that is not always decipherable in scientific literature. Protein Structure Prediction: Methods and Protocols covers the topic of protein structure prediction in an eclectic fashion, detailing aspects of pred- tion that range from sequence analysis (a starting point for many algorithms) to secondary and tertiary methods, on into the prediction of docked complexes (an essential point in order to fully understand biological function). As this volume progresses, the authors contribute their expert knowledge of protein structure prediction to many disciplines, such as the identification of motifs and domains, the comparative modeling of proteins, and ab initio approaches to protein loop, side chain, and protein prediction.
Computer Simulations of Aggregation of Proteins and Peptides
Title | Computer Simulations of Aggregation of Proteins and Peptides PDF eBook |
Author | Mai Suan Li |
Publisher | Humana |
Pages | 478 |
Release | 2022-02-16 |
Genre | Science |
ISBN | 9781071615454 |
This volume provides computational methods and reviews various aspects of computational studies of protein aggregation. Chapters discuss the relationship between protein misfolding and protein aggregation, methods of prediction of aggregation propensities of protein, peptides, protein structure, results of computer simulations of aggregation, and computational simulations focused on specific diseases such as Alzheimer’s, Parkinson’s, and preeclampsia. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computer Simulations of Aggregation of Proteins and Peptides aims to ensure successful results in the further study of this vital field.
Crystallography Made Crystal Clear
Title | Crystallography Made Crystal Clear PDF eBook |
Author | Gale Rhodes |
Publisher | Academic Press |
Pages | 217 |
Release | 2012-12-02 |
Genre | Science |
ISBN | 0323137784 |
Crystallography Made Crystal Clear is designed to meet the need for an X-ray analysis that is between brief textbook sections and complete treatments. The book provides non-crystallographers with an intellectually satisfying explanation of the principles of how protein models are gleaned from X-ray analysis. The understanding of these concepts will foster wise use of the models, including the recognition of the strengths and weaknesses of pictures or computer graphics. Since proteins comprise the majority of the mass of macromolecules in cells and carry out biologically important tasks, the book will be of interest to biologists.Provides accessible descriptions of principles of x-ray crystallography, built on simple foundations for anyone with a basic science backgroundLeads the reader through clear, thorough, unintimidating explanations of the mathematics behind crystallographyExplains how to read crystallography papers in research journalsIf you use computer-generated models of proteins or nucleic acids for:Studying molecular interactionsDesigning ligands, inhibitors, or drugsEngineering new protein functionsInterpreting chemical, kinetic, thermodynamic, or spectroscopic dataStudying protein foldingTeaching macromolecule structure,and if you want to read new structure papers intelligently; become a wiser user of macromolecular models; and want to introduce undergraduates to the important subject of x-ray crystallography, then this book is for you.
The Proteomics Protocols Handbook
Title | The Proteomics Protocols Handbook PDF eBook |
Author | John M. Walker |
Publisher | Springer Science & Business Media |
Pages | 969 |
Release | 2007-10-09 |
Genre | Science |
ISBN | 1592598900 |
Hands-on researchers describe in step-by-step detail 73 proven laboratory methods and bioinformatics tools essential for analysis of the proteome. These cutting-edge techniques address such important tasks as sample preparation, 2D-PAGE, gel staining, mass spectrometry, and post-translational modification. There are also readily reproducible methods for protein expression profiling, identifying protein-protein interactions, and protein chip technology, as well as a range of newly developed methodologies for determining the structure and function of a protein. The bioinformatics tools include those for analyzing 2D-GEL patterns, protein modeling, and protein identification. All laboratory-based protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.
Protein-protein Complexes
Title | Protein-protein Complexes PDF eBook |
Author | Martin Zacharias |
Publisher | World Scientific |
Pages | 401 |
Release | 2010 |
Genre | Science |
ISBN | 1848163398 |
Given the immense progress achieved in elucidating protein-protein complex structures and in the field of protein interaction modeling, there is great demand for a book that gives interested researchers/students a comprehensive overview of the field. This book does just that. It focuses on what can be learned about protein-protein interactions from the analysis of protein-protein complex structures and interfaces. What are the driving forces for protein-protein association? How can we extract the mechanism of specific recognition from studying protein-protein interfaces? How can this knowledge be used to predict and design protein-protein interactions (interaction regions and complex structures)? What methods are currently employed to design protein-protein interactions, and how can we influence protein-protein interactions by mutagenesis and small-molecule drugs or peptide mimetics?The book consists of about 15 review chapters, written by experts, on the characterization of protein-protein interfaces, structure determination of protein complexes (by NMR and X-ray), theory of protein-protein binding, dynamics of protein interfaces, bioinformatics methods to predict interaction regions, and prediction of protein-protein complex structures (docking and homology modeling of complexes, etc.) and design of protein-protein interactions. It serves as a bridge between studying/analyzing protein-protein complex structures (interfaces), predicting interactions, and influencing/designing interactions.