Sobolev Spaces on Metric Measure Spaces

Sobolev Spaces on Metric Measure Spaces
Title Sobolev Spaces on Metric Measure Spaces PDF eBook
Author Juha Heinonen
Publisher Cambridge University Press
Pages 447
Release 2015-02-05
Genre Mathematics
ISBN 1107092345

Download Sobolev Spaces on Metric Measure Spaces Book in PDF, Epub and Kindle

This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.

Metric In Measure Spaces

Metric In Measure Spaces
Title Metric In Measure Spaces PDF eBook
Author James J Yeh
Publisher World Scientific
Pages 308
Release 2019-11-18
Genre Mathematics
ISBN 9813200421

Download Metric In Measure Spaces Book in PDF, Epub and Kindle

Measure and metric are two fundamental concepts in measuring the size of a mathematical object. Yet there has been no systematic investigation of this relation. The book closes this gap.

Lectures on Analysis on Metric Spaces

Lectures on Analysis on Metric Spaces
Title Lectures on Analysis on Metric Spaces PDF eBook
Author Juha Heinonen
Publisher Springer Science & Business Media
Pages 158
Release 2001
Genre Mathematics
ISBN 9780387951041

Download Lectures on Analysis on Metric Spaces Book in PDF, Epub and Kindle

The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.

Analysis and Geometry of Metric Measure Spaces

Analysis and Geometry of Metric Measure Spaces
Title Analysis and Geometry of Metric Measure Spaces PDF eBook
Author Galia Devora Dafni
Publisher American Mathematical Soc.
Pages 241
Release 2013
Genre Mathematics
ISBN 0821894188

Download Analysis and Geometry of Metric Measure Spaces Book in PDF, Epub and Kindle

Contains lecture notes from most of the courses presented at the 50th anniversary edition of the Seminaire de Mathematiques Superieure in Montreal. This 2011 summer school was devoted to the analysis and geometry of metric measure spaces, and featured much interplay between this subject and the emergent topic of optimal transportation.

An Introduction to Measure Theory

An Introduction to Measure Theory
Title An Introduction to Measure Theory PDF eBook
Author Terence Tao
Publisher American Mathematical Soc.
Pages 206
Release 2021-09-03
Genre Education
ISBN 1470466406

Download An Introduction to Measure Theory Book in PDF, Epub and Kindle

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

New Trends on Analysis and Geometry in Metric Spaces

New Trends on Analysis and Geometry in Metric Spaces
Title New Trends on Analysis and Geometry in Metric Spaces PDF eBook
Author Fabrice Baudoin
Publisher Springer Nature
Pages 312
Release 2022-02-04
Genre Mathematics
ISBN 3030841413

Download New Trends on Analysis and Geometry in Metric Spaces Book in PDF, Epub and Kindle

This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.

Gradient Flows

Gradient Flows
Title Gradient Flows PDF eBook
Author Luigi Ambrosio
Publisher Springer Science & Business Media
Pages 333
Release 2008-10-29
Genre Mathematics
ISBN 376438722X

Download Gradient Flows Book in PDF, Epub and Kindle

The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.