Methods Of Qualitative Theory In Nonlinear Dynamics (Part I)

Methods Of Qualitative Theory In Nonlinear Dynamics (Part I)
Title Methods Of Qualitative Theory In Nonlinear Dynamics (Part I) PDF eBook
Author Leonid P Shilnikov
Publisher World Scientific
Pages 418
Release 1998-12-08
Genre Science
ISBN 9814496421

Download Methods Of Qualitative Theory In Nonlinear Dynamics (Part I) Book in PDF, Epub and Kindle

Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need.Following the footsteps of Poincaré, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form.In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced students of nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.

Methods of Qualitative Theory in Nonlinear Dynamics

Methods of Qualitative Theory in Nonlinear Dynamics
Title Methods of Qualitative Theory in Nonlinear Dynamics PDF eBook
Author Leonid P. Shilnikov
Publisher World Scientific
Pages 420
Release 1998
Genre Science
ISBN 9789810233822

Download Methods of Qualitative Theory in Nonlinear Dynamics Book in PDF, Epub and Kindle

Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need. Following the footsteps of Poincare, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form. In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced studentsof nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.

Methods of Qualitative Theory in Nonlinear Dynamics

Methods of Qualitative Theory in Nonlinear Dynamics
Title Methods of Qualitative Theory in Nonlinear Dynamics PDF eBook
Author L. P. Shil'nikov
Publisher World Scientific
Pages 591
Release 2001
Genre Mathematics
ISBN 9812798552

Download Methods of Qualitative Theory in Nonlinear Dynamics Book in PDF, Epub and Kindle

Bifurcation and chaos has dominated research in nonlinear dynamics for over two decades, and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book has been written to serve that unfulfilled need. Following the footsteps of Poincar(r), and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in the book have been developed only recently and have not yet appeared in textbook form. In keeping with the self-contained nature of the book, all the topics are developed with introductory background and complete mathematical rigor. Generously illustrated and written at a high level of exposition, this invaluable book will appeal to both the beginner and the advanced student of nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject. Sample Chapter(s). Introduction to Part II (124 KB). Chapter 7.1: Rough systems on a plane. Andronov-Pontryagin theorem (218 KB). Chapter 7.2: The set of center motions (158 KB). Chapter 7.3: General classification of center motions (155 KB). Chapter 7.4: Remarks on roughness of high-order dynamical systems (136 KB). Chapter 7.5: Morse-Smale systems (435 KB). Chapter 7.6: Some properties of Morse-Smale systems (211 KB). Contents: Structurally Stable Systems; Bifurcations of Dynamical Systems; The Behavior of Dynamical Systems on Stability Boundaries of Equilibrium States; The Behavior of Dynamical Systems on Stability Boundaries of Periodic Trajectories; Local Bifurcations on the Route Over Stability Boundaries; Global Bifurcations at the Disappearance of a Saddle-Node Equilibrium States and Periodic Orbits; Bifurcations of Homoclinic Loops of Saddle Equilibrium States; Safe and Dangerous Boundaries. Readership: Engineers, students, mathematicians and researchers in nonlinear dynamics and dynamical systems.

Methods of Qualitative Theory in Nonlinear Dynamics

Methods of Qualitative Theory in Nonlinear Dynamics
Title Methods of Qualitative Theory in Nonlinear Dynamics PDF eBook
Author L. P. Shilʹnikov
Publisher
Pages 957
Release 1998
Genre Nonlinear mechanics
ISBN 9789810233822

Download Methods of Qualitative Theory in Nonlinear Dynamics Book in PDF, Epub and Kindle

Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need. Following the footsteps of Poincare, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form. In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced students of nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject

Methods Of Qualitative Theory In Nonlinear Dynamics (Part Ii)

Methods Of Qualitative Theory In Nonlinear Dynamics (Part Ii)
Title Methods Of Qualitative Theory In Nonlinear Dynamics (Part Ii) PDF eBook
Author Leon O Chua
Publisher World Scientific
Pages 591
Release 2001-09-27
Genre Science
ISBN 9814494291

Download Methods Of Qualitative Theory In Nonlinear Dynamics (Part Ii) Book in PDF, Epub and Kindle

Bifurcation and chaos has dominated research in nonlinear dynamics for over two decades, and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book has been written to serve that unfulfilled need.Following the footsteps of Poincaré, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in the book have been developed only recently and have not yet appeared in textbook form.In keeping with the self-contained nature of the book, all the topics are developed with introductory background and complete mathematical rigor. Generously illustrated and written at a high level of exposition, this invaluable book will appeal to both the beginner and the advanced student of nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos
Title Nonlinear Dynamics and Chaos PDF eBook
Author Steven H. Strogatz
Publisher CRC Press
Pages 532
Release 2018-05-04
Genre Mathematics
ISBN 0429961111

Download Nonlinear Dynamics and Chaos Book in PDF, Epub and Kindle

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Nonlinear Dynamics of Interacting Populations

Nonlinear Dynamics of Interacting Populations
Title Nonlinear Dynamics of Interacting Populations PDF eBook
Author A. D. Bazykin
Publisher World Scientific
Pages 224
Release 1998
Genre Science
ISBN 9789810216856

Download Nonlinear Dynamics of Interacting Populations Book in PDF, Epub and Kindle

This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of “dangerous boundaries” in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory.