Applied Complex Analysis with Partial Differential Equations
Title | Applied Complex Analysis with Partial Differential Equations PDF eBook |
Author | Nakhlé H. Asmar |
Publisher | |
Pages | 904 |
Release | 2002 |
Genre | Mathematics |
ISBN |
This reader-friendly book presents traditional material using a modern approach that invites the use of technology. Abundant exercises, examples, and graphics make it a comprehensive and visually appealing resource. Chapter topics include complex numbers and functions, analytic functions, complex integration, complex series, residues: applications and theory, conformal mapping, partial differential equations: methods and applications, transform methods, and partial differential equations in polar and spherical coordinates. For engineers and physicists in need of a quick reference tool.
Functional Analysis, Sobolev Spaces and Partial Differential Equations
Title | Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF eBook |
Author | Haim Brezis |
Publisher | Springer Science & Business Media |
Pages | 600 |
Release | 2010-11-02 |
Genre | Mathematics |
ISBN | 0387709142 |
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Introduction to Partial Differential Equations with Applications
Title | Introduction to Partial Differential Equations with Applications PDF eBook |
Author | E. C. Zachmanoglou |
Publisher | Courier Corporation |
Pages | 434 |
Release | 2012-04-20 |
Genre | Mathematics |
ISBN | 048613217X |
This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.
Complex Analysis and Differential Equations
Title | Complex Analysis and Differential Equations PDF eBook |
Author | Luis Barreira |
Publisher | Springer Science & Business Media |
Pages | 417 |
Release | 2012-04-23 |
Genre | Mathematics |
ISBN | 1447140087 |
This text provides an accessible, self-contained and rigorous introduction to complex analysis and differential equations. Topics covered include holomorphic functions, Fourier series, ordinary and partial differential equations. The text is divided into two parts: part one focuses on complex analysis and part two on differential equations. Each part can be read independently, so in essence this text offers two books in one. In the second part of the book, some emphasis is given to the application of complex analysis to differential equations. Half of the book consists of approximately 200 worked out problems, carefully prepared for each part of theory, plus 200 exercises of variable levels of difficulty. Tailored to any course giving the first introduction to complex analysis or differential equations, this text assumes only a basic knowledge of linear algebra and differential and integral calculus. Moreover, the large number of examples, worked out problems and exercises makes this the ideal book for independent study.
Complex Analytic Methods for Partial Differential Equations
Title | Complex Analytic Methods for Partial Differential Equations PDF eBook |
Author | Heinrich G. W. Begehr |
Publisher | World Scientific |
Pages | 288 |
Release | 1994 |
Genre | Mathematics |
ISBN | 9789810215507 |
This is an introductory text for beginners who have a basic knowledge of complex analysis, functional analysis and partial differential equations. Riemann and Riemann-Hilbert boundary value problems are discussed for analytic functions, for inhomogeneous Cauchy-Riemann systems as well as for generalized Beltrami systems. Related problems such as the Poincar problem, pseudoparabolic systems and complex elliptic second order equations are also considered. Estimates for solutions to linear equations existence and uniqueness results are thus available for related nonlinear problems; the method is explained by constructing entire solutions to nonlinear Beltrami equations. Often problems are discussed just for the unit disc but more general domains, even of multiply connectivity, are involved.
Methods of Complex Analysis in Partial Differential Equations with Applications
Title | Methods of Complex Analysis in Partial Differential Equations with Applications PDF eBook |
Author | Manfred Kracht |
Publisher | New York ; Toronto : Wiley |
Pages | 424 |
Release | 1988 |
Genre | Mathematics |
ISBN |
This book is devoted to the development of complex function theoretic methods in partial differential equations and to the study of analytic behaviour of solutions. It presents basic facts of the subject and includes recent results, emphasizing the method of integral operators and the method of differential operators. The first chapter gives a motivation for and the underlying ideas of, the later chapters. Chapters 2 to 7 give a detailed exposition of the basic concepts and fundamental theorems, as well as their most recent development. Chapters 8 to 13 are concerned with the application of the theory to three important classes of differential equations of mathematical physics.
Finite Difference Methods for Ordinary and Partial Differential Equations
Title | Finite Difference Methods for Ordinary and Partial Differential Equations PDF eBook |
Author | Randall J. LeVeque |
Publisher | SIAM |
Pages | 356 |
Release | 2007-01-01 |
Genre | Mathematics |
ISBN | 9780898717839 |
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.