Testing for Small-Delay Defects in Nanoscale CMOS Integrated Circuits
Title | Testing for Small-Delay Defects in Nanoscale CMOS Integrated Circuits PDF eBook |
Author | Sandeep K. Goel |
Publisher | CRC Press |
Pages | 266 |
Release | 2017-12-19 |
Genre | Technology & Engineering |
ISBN | 1351833707 |
Advances in design methods and process technologies have resulted in a continuous increase in the complexity of integrated circuits (ICs). However, the increased complexity and nanometer-size features of modern ICs make them susceptible to manufacturing defects, as well as performance and quality issues. Testing for Small-Delay Defects in Nanoscale CMOS Integrated Circuits covers common problems in areas such as process variations, power supply noise, crosstalk, resistive opens/bridges, and design-for-manufacturing (DfM)-related rule violations. The book also addresses testing for small-delay defects (SDDs), which can cause immediate timing failures on both critical and non-critical paths in the circuit. Overviews semiconductor industry test challenges and the need for SDD testing, including basic concepts and introductory material Describes algorithmic solutions incorporated in commercial tools from Mentor Graphics Reviews SDD testing based on "alternative methods" that explores new metrics, top-off ATPG, and circuit topology-based solutions Highlights the advantages and disadvantages of a diverse set of metrics, and identifies scope for improvement Written from the triple viewpoint of university researchers, EDA tool developers, and chip designers and tool users, this book is the first of its kind to address all aspects of SDD testing from such a diverse perspective. The book is designed as a one-stop reference for current industrial practices, research challenges in the domain of SDD testing, and recent developments in SDD solutions.
Test and Diagnosis for Small-Delay Defects
Title | Test and Diagnosis for Small-Delay Defects PDF eBook |
Author | Mohammad Tehranipoor |
Publisher | Springer Science & Business Media |
Pages | 228 |
Release | 2011-09-08 |
Genre | Technology & Engineering |
ISBN | 1441982973 |
This book will introduce new techniques for detecting and diagnosing small-delay defects in integrated circuits. Although this sort of timing defect is commonly found in integrated circuits manufactured with nanometer technology, this will be the first book to introduce effective and scalable methodologies for screening and diagnosing small-delay defects, including important parameters such as process variations, crosstalk, and power supply noise.
Advances in Electronic Testing
Title | Advances in Electronic Testing PDF eBook |
Author | Dimitris Gizopoulos |
Publisher | Springer Science & Business Media |
Pages | 431 |
Release | 2006-01-22 |
Genre | Technology & Engineering |
ISBN | 0387294090 |
This is a new type of edited volume in the Frontiers in Electronic Testing book series devoted to recent advances in electronic circuits testing. The book is a comprehensive elaboration on important topics which capture major research and development efforts today. "Hot" topics of current interest to test technology community have been selected, and the authors are key contributors in the corresponding topics.
The Best of ICCAD
Title | The Best of ICCAD PDF eBook |
Author | Andreas Kuehlmann |
Publisher | Springer Science & Business Media |
Pages | 699 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 1461502926 |
In 2002, the International Conference on Computer Aided Design (ICCAD) celebrates its 20th anniversary. This book commemorates contributions made by ICCAD to the broad field of design automation during that time. The foundation of ICCAD in 1982 coincided with the growth of Large Scale Integration. The sharply increased functionality of board-level circuits led to a major demand for more powerful Electronic Design Automation (EDA) tools. At the same time, LSI grew quickly and advanced circuit integration became widely avail able. This, in turn, required new tools, using sophisticated modeling, analysis and optimization algorithms in order to manage the evermore complex design processes. Not surprisingly, during the same period, a number of start-up com panies began to commercialize EDA solutions, complementing various existing in-house efforts. The overall increased interest in Design Automation (DA) re quired a new forum for the emerging community of EDA professionals; one which would be focused on the publication of high-quality research results and provide a structure for the exchange of ideas on a broad scale. Many of the original ICCAD volunteers were also members of CANDE (Computer-Aided Network Design), a workshop of the IEEE Circuits and Sys tem Society. In fact, it was at a CANDE workshop that Bill McCalla suggested the creation of a conference for the EDA professional. (Bill later developed the name).
Defect-Oriented Testing for Nano-Metric CMOS VLSI Circuits
Title | Defect-Oriented Testing for Nano-Metric CMOS VLSI Circuits PDF eBook |
Author | Manoj Sachdev |
Publisher | Springer Science & Business Media |
Pages | 343 |
Release | 2007-06-04 |
Genre | Technology & Engineering |
ISBN | 0387465472 |
The 2nd edition of defect oriented testing has been extensively updated. New chapters on Functional, Parametric Defect Models and Inductive fault Analysis and Yield Engineering have been added to provide a link between defect sources and yield. The chapter on RAM testing has been updated with focus on parametric and SRAM stability testing. Similarly, newer material has been incorporated in digital fault modeling and analog testing chapters. The strength of Defect Oriented Testing for nano-Metric CMOS VLSIs lies in its industrial relevance.
Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design
Title | Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design PDF eBook |
Author | Xiaowei Li |
Publisher | Springer Nature |
Pages | 318 |
Release | 2023-03-01 |
Genre | Computers |
ISBN | 9811985510 |
With the end of Dennard scaling and Moore’s law, IC chips, especially large-scale ones, now face more reliability challenges, and reliability has become one of the mainstay merits of VLSI designs. In this context, this book presents a built-in on-chip fault-tolerant computing paradigm that seeks to combine fault detection, fault diagnosis, and error recovery in large-scale VLSI design in a unified manner so as to minimize resource overhead and performance penalties. Following this computing paradigm, we propose a holistic solution based on three key components: self-test, self-diagnosis and self-repair, or “3S” for short. We then explore the use of 3S for general IC designs, general-purpose processors, network-on-chip (NoC) and deep learning accelerators, and present prototypes to demonstrate how 3S responds to in-field silicon degradation and recovery under various runtime faults caused by aging, process variations, or radical particles. Moreover, we demonstrate that 3S not only offers a powerful backbone for various on-chip fault-tolerant designs and implementations, but also has farther-reaching implications such as maintaining graceful performance degradation, mitigating the impact of verification blind spots, and improving chip yield. This book is the outcome of extensive fault-tolerant computing research pursued at the State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences over the past decade. The proposed built-in on-chip fault-tolerant computing paradigm has been verified in a broad range of scenarios, from small processors in satellite computers to large processors in HPCs. Hopefully, it will provide an alternative yet effective solution to the growing reliability challenges for large-scale VLSI designs.
VLSI-SoC: New Technology Enabler
Title | VLSI-SoC: New Technology Enabler PDF eBook |
Author | Carolina Metzler |
Publisher | Springer Nature |
Pages | 355 |
Release | 2020-07-22 |
Genre | Computers |
ISBN | 3030532739 |
This book contains extended and revised versions of the best papers presented at the 27th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2019, held in Cusco, Peru, in October 2019. The 15 full papers included in this volume were carefully reviewed and selected from the 28 papers (out of 82 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like heterogeneous, neuromorphic and brain-inspired, biologically-inspired, approximate computing systems.