Cells: Molecules and Mechanisms
Title | Cells: Molecules and Mechanisms PDF eBook |
Author | Eric Wong |
Publisher | Axolotl Academic Publishing |
Pages | 283 |
Release | 2009 |
Genre | Biology |
ISBN | 0985226110 |
"Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology."--Open Textbook Library.
Molecular Biology of the Cell
Title | Molecular Biology of the Cell PDF eBook |
Author | |
Publisher | |
Pages | 0 |
Release | 2002 |
Genre | Cells |
ISBN | 9780815332183 |
Physical Models of Cell Motility
Title | Physical Models of Cell Motility PDF eBook |
Author | Igor S. Aranson |
Publisher | Springer |
Pages | 208 |
Release | 2015-12-16 |
Genre | Science |
ISBN | 3319244485 |
This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force generation and motility, an abundance of computational models have been proposed in recent years, from finite element to immerse interface methods and phase field approaches.This book is primarily written for physicists, mathematical biologists and biomedical engineers working in this rapidly expanding field, and can serve as supplementary reading for advanced graduate courses in biophysics and mathematical biology. The e-book incorporates experimental and computer animations illustrating various aspects of cell movement./div
Cell Movements
Title | Cell Movements PDF eBook |
Author | Dennis Bray |
Publisher | Garland Science |
Pages | 396 |
Release | 2001 |
Genre | Cells |
ISBN | 9780815332824 |
This book vividly describes how complex and integrated movements can arise from the properties and behaviors of biological molecules. It provides a uniquely integrated account in which the latest findings from biophysics and molecular biology are put into the context of living cells. This second edition is updated throughout with recent advances in the field and has a completely revised and redrawn art program. The text is suitable for advanced undergraduates, graduate students, and for professionals wishing for an overview of this field.
Diatom Gliding Motility
Title | Diatom Gliding Motility PDF eBook |
Author | Stanley A. Cohn |
Publisher | John Wiley & Sons |
Pages | 483 |
Release | 2021-09-08 |
Genre | Science |
ISBN | 1119526353 |
DIATOM GLIDING MOTILITY Moving photosynthetic organisms are still a great mystery for biologists and this book summarizes what is known and reports the current understanding and modeling of those complex processes. The book covers a broad range of work describing our current state of understanding on the topic, including: historic knowledge and misconceptions of motility; evolution of diatom motility; diatom ecology & physiology; cell biology and biochemistry of diatom motility, anatomy of motile diatoms; observations of diatom motile behavior; diatom competitive ability, unique forms of diatom motility as found in the genus Eunotia; and models of motility. This is the first book attempting to gather such information surrounding diatom motility into one volume focusing on this single topic. Readers will be able to gather both the current state of understanding on the potential mechanisms and ecological regulators of motility, as well as possible models and approaches used to help determine how diatoms accomplish such varied behaviors as diurnal movements, accumulation into areas of light, niche partitioning to increase species success. Given the fact that diatoms remain one of the most ecologically crucial cells in aquatic ecosystems, we hope that this volume will act as a springboard towards future research into diatom motility and even better resolution of some of the issues in motility. Audience Diatomists, phycologists, aquatic ecologists, cellular physiologists, environmental biologists, biophysicists, diatom nanotechnologists, algal ecologists, taxonomists.
Cytoskeleton
Title | Cytoskeleton PDF eBook |
Author | Jose C. Jimenez-Lopez |
Publisher | BoD – Books on Demand |
Pages | 344 |
Release | 2017-05-17 |
Genre | Science |
ISBN | 9535131699 |
The cytoskeleton is a highly dynamic intracellular platform constituted by a three-dimensional network of proteins responsible for key cellular roles as structure and shape, cell growth and development, and offering to the cell with "motility" that being the ability of the entire cell to move and for material to be moved within the cell in a regulated fashion (vesicle trafficking). The present edition of Cytoskeleton provides new insights into the structure-functional features, dynamics, and cytoskeleton's relationship to diseases. The authors' contribution in this book will be of substantial importance to a wide audience such as clinicians, researches, educators, and students interested in getting updated knowledge about molecular basis of cytoskeleton, such as regulation of cell vital processes by actin-binding proteins as cell morphogenesis, motility, their implications in cell signaling, as well as strategies for clinical trial and alternative therapies based in multitargeting molecules to tackle diseases, that is, cancer.
Colonic Motility
Title | Colonic Motility PDF eBook |
Author | Sushil K. Sarna |
Publisher | Biota Publishing |
Pages | 159 |
Release | 2010-11-01 |
Genre | Medical |
ISBN | 1615041516 |
Three distinct types of contractions perform colonic motility functions. Rhythmic phasic contractions (RPCs) cause slow net distal propulsion with extensive mixing/turning over. Infrequently occurring giant migrating contractions (GMCs) produce mass movements. Tonic contractions aid RPCs in their motor function. The spatiotemporal patterns of these contractions differ markedly. The amplitude and distance of propagation of a GMC are several-fold larger than those of an RPC. The enteric neurons and smooth muscle cells are the core regulators of all three types of contractions. The regulation of contractions by these mechanisms is modifiable by extrinsic factors: CNS, autonomic neurons, hormones, inflammatory mediators, and stress mediators. Only the GMCs produce descending inhibition, which accommodates the large bolus being propelled without increasing muscle tone. The strong compression of the colon wall generates afferent signals that are below nociceptive threshold in healthy subjects. However, these signals become nociceptive; if the amplitudes of GMCs increase, afferent nerves become hypersensitive, or descending inhibition is impaired. The GMCs also provide the force for rapid propulsion of feces and descending inhibition to relax the internal anal sphincter during defecation. The dysregulation of GMCs is a major factor in colonic motility disorders: irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and diverticular disease (DD). Frequent mass movements by GMCs cause diarrhea in diarrhea predominant IBS, IBD, and DD, while a decrease in the frequency of GMCs causes constipation. The GMCs generate the afferent signals for intermittent short-lived episodes of abdominal cramping in these disorders. Epigenetic dysregulation due to adverse events in early life is one of the major factors in generating the symptoms of IBS in adulthood.