Mechanics of Poroelastic Media
Title | Mechanics of Poroelastic Media PDF eBook |
Author | A.P.S. Selvadurai |
Publisher | Springer Science & Business Media |
Pages | 389 |
Release | 2013-03-14 |
Genre | Science |
ISBN | 9401586985 |
In Mechanics of Poroelastic Media the classical theory of poroelasticity developed by Biot is developed and extended to the study of problems in geomechanics, biomechanics, environmental mechanics and materials science. The contributions are grouped into sections covering constitutive modelling, analytical aspects, numerical modelling, and applications to problems. The applications of the classical theory of poroelasticity to a wider class of problems will be of particular interest. The text is a standard reference for researchers interested in developing mathematical models of poroelasticity in geoenvironmental mechanics, and in the application of advanced theories of poroelastic biomaterials to the mechanics of biomaterials.
Mechanics of Poroelastic Media
Title | Mechanics of Poroelastic Media PDF eBook |
Author | A.P.S. Selvadurai |
Publisher | Springer Science & Business Media |
Pages | 416 |
Release | 1996-01-31 |
Genre | Science |
ISBN | 9780792333296 |
In Mechanics of Poroelastic Media the classical theory of poroelasticity developed by Biot is developed and extended to the study of problems in geomechanics, biomechanics, environmental mechanics and materials science. The contributions are grouped into sections covering constitutive modelling, analytical aspects, numerical modelling, and applications to problems. The applications of the classical theory of poroelasticity to a wider class of problems will be of particular interest. The text is a standard reference for researchers interested in developing mathematical models of poroelasticity in geoenvironmental mechanics, and in the application of advanced theories of poroelastic biomaterials to the mechanics of biomaterials.
Poroelasticity
Title | Poroelasticity PDF eBook |
Author | Alexander H.-D. Cheng |
Publisher | Springer |
Pages | 893 |
Release | 2016-04-20 |
Genre | Science |
ISBN | 331925202X |
This book treats the mechanics of porous materials infiltrated with a fluid (poromechanics), focussing on its linear theory (poroelasticity). Porous materials from inanimate bodies such as sand, soil and rock, living bodies such as plant tissue, animal flesh, or man-made materials can look very different due to their different origins, but as readers will see, the underlying physical principles governing their mechanical behaviors can be the same, making this work relevant not only to engineers but also to scientists across other scientific disciplines. Readers will find discussions of physical phenomena including soil consolidation, land subsidence, slope stability, borehole failure, hydraulic fracturing, water wave and seabed interaction, earthquake aftershock, fluid injection induced seismicity and heat induced pore pressure spalling as well as discussions of seismoelectric and seismoelectromagnetic effects. The work also explores the biomechanics of cartilage, bone and blood vessels. Chapters present theory using an intuitive, phenomenological approach at the bulk continuum level, and a thermodynamics-based variational energy approach at the micromechanical level. The physical mechanisms covered extend from the quasi-static theory of poroelasticity to poroelastodynamics, poroviscoelasticity, porothermoelasticity, and porochemoelasticity. Closed form analytical solutions are derived in details. This book provides an excellent introduction to linear poroelasticity and is especially relevant to those involved in civil engineering, petroleum and reservoir engineering, rock mechanics, hydrology, geophysics, and biomechanics.
Mechanics of Porous and Fractured Media
Title | Mechanics of Porous and Fractured Media PDF eBook |
Author | Viktor Nikolaevich Nikolaevski? |
Publisher | World Scientific |
Pages | 496 |
Release | 1990 |
Genre | Technology & Engineering |
ISBN | 9789971503833 |
In a significantly revised English edition the text provides a solid course on mechanics of porous & fractured media (mainly of geomaterials). Part I focuses on the continuum theory of the dynamic fracture and deformation of bodies with complex rheology, including the dilatancy theory. Applications are connected with dynamics large scale processes, blast waves and with structure of the Earth's crust. Part II focuses on the effects of fluid saturation of pores and transfer phenomena. Applications are connected with seismic waves, oil and gascondensate recovery, explosion works, physico-chemical processes.
Porous Media
Title | Porous Media PDF eBook |
Author | Wolfgang Ehlers |
Publisher | Springer Science & Business Media |
Pages | 459 |
Release | 2013-03-09 |
Genre | Technology & Engineering |
ISBN | 3662049996 |
The present volume offers a state-of-the-art report on the various recent sci entific developments in the Theory of Porous Media (TPM) comprehending the basic theoretical concepts in continuum mechanics on porous and mul tiphasic materials as well as the wide range of experimental and numerical applications. Following this, the volume does not only address the sophisti cated reader but also the interested beginner in the area of Porous Media by presenting a collection of articles. These articles written by experts in the field concern the fundamental approaches to multiphasic and porous materials as well as various applications to engineering problems. In many branches of engineering just as in applied natural sciences like bio- and chemomechanics, one often has to deal with continuum mechanical problems which cannot be uniquely classified within the well-known disci plines of either "solid mechanics" or "fluid mechanics". These problems, characterized by the fact that they require a unified treatment of volumetri cally coupled solid-fluid aggregates; basically fall into the categories of either mixtures or porous media. Following this, there is a broad variety of problems ranging in this category as for example the investigation of reacting fluid mix tures or solid-fluid suspensions as well as the investigation of the coupled solid deformation and pore-fluid flow behaviour of liquid- and gas-saturated porous solid skeleton materials like geomaterials (soil, rock, concrete, etc. ), polymeric and metallic foams or biomaterials (hard and soft tissues, etc).
Mechanics and Physics of Porous Solids
Title | Mechanics and Physics of Porous Solids PDF eBook |
Author | Olivier Coussy |
Publisher | John Wiley & Sons |
Pages | 246 |
Release | 2011-06-28 |
Genre | Science |
ISBN | 1119956161 |
Mechanics and Physics of Porous Solids addresses the mechanics and physics of deformable porous materials whose porous space is filled by one or several fluid mixtures interacting with the solid matrix. Coussy uses the language of thermodynamics to frame the discussion of this topic and bridge the gap between physicists and engineers, and organises the material in such a way that individual phases are explored, followed by coupled problems of increasing complexity. This structure allows the reader to build a solid understanding of the physical processes occurring in the fluids and then porous solids. Mechanics and Physics of Porous Solids offers a critical reference on the physics of multiphase porous materials - key reading for engineers and researchers in structural and material engineering, concrete, wood and materials science, rock and soil mechanics, mining and oil prospecting, biomechanics.
Theory of Porous Media
Title | Theory of Porous Media PDF eBook |
Author | Reint de Boer |
Publisher | Springer Science & Business Media |
Pages | 626 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642596371 |
This is a consistent treatment of the material-independent fundamental equations of the theory of porous media, formulating constitutive equations for frictional materials in the elastic and plastic range, while tracing the historical development of the theory. Thus, for the first time, a unique treatment of fluid-saturated porous solids is presented, including an explanation of the corresponding theory by way of its historical progression, and a thorough description of its current state.