Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems
Title | Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems PDF eBook |
Author | Laurent Lazzarini |
Publisher | American Mathematical Soc. |
Pages | 122 |
Release | 2019-02-21 |
Genre | Mathematics |
ISBN | 147043492X |
A wandering domain for a diffeomorphism of is an open connected set such that for all . The authors endow with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map of a Hamiltonian which depends only on the action variables, has no nonempty wandering domains. The aim of this paper is to estimate the size (measure and Gromov capacity) of wandering domains in the case of an exact symplectic perturbation of , in the analytic or Gevrey category. Upper estimates are related to Nekhoroshev theory; lower estimates are related to examples of Arnold diffusion. This is a contribution to the “quantitative Hamiltonian perturbation theory” initiated in previous works on the optimality of long term stability estimates and diffusion times; the emphasis here is on discrete systems because this is the natural setting to study wandering domains.
Algebraic Geometry over C∞-Rings
Title | Algebraic Geometry over C∞-Rings PDF eBook |
Author | Dominic Joyce |
Publisher | American Mathematical Soc. |
Pages | 152 |
Release | 2019-09-05 |
Genre | Mathematics |
ISBN | 1470436450 |
If X is a manifold then the R-algebra C∞(X) of smooth functions c:X→R is a C∞-ring. That is, for each smooth function f:Rn→R there is an n-fold operation Φf:C∞(X)n→C∞(X) acting by Φf:(c1,…,cn)↦f(c1,…,cn), and these operations Φf satisfy many natural identities. Thus, C∞(X) actually has a far richer structure than the obvious R-algebra structure. The author explains the foundations of a version of algebraic geometry in which rings or algebras are replaced by C∞-rings. As schemes are the basic objects in algebraic geometry, the new basic objects are C∞-schemes, a category of geometric objects which generalize manifolds and whose morphisms generalize smooth maps. The author also studies quasicoherent sheaves on C∞-schemes, and C∞-stacks, in particular Deligne-Mumford C∞-stacks, a 2-category of geometric objects generalizing orbifolds. Many of these ideas are not new: C∞-rings and C∞ -schemes have long been part of synthetic differential geometry. But the author develops them in new directions. In earlier publications, the author used these tools to define d-manifolds and d-orbifolds, “derived” versions of manifolds and orbifolds related to Spivak's “derived manifolds”.
On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation
Title | On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation PDF eBook |
Author | Charles Collot |
Publisher | American Mathematical Soc. |
Pages | 110 |
Release | 2019-09-05 |
Genre | Mathematics |
ISBN | 1470436264 |
The authors consider the energy super critical semilinear heat equation The authors first revisit the construction of radially symmetric self similar solutions performed through an ode approach and propose a bifurcation type argument which allows for a sharp control of the spectrum of the corresponding linearized operator in suitable weighted spaces. They then show how the sole knowledge of this spectral gap in weighted spaces implies the finite codimensional nonradial stability of these solutions for smooth well localized initial data using energy bounds. The whole scheme draws a route map for the derivation of the existence and stability of self-similar blow up in nonradial energy super critical settings.
Moufang Loops and Groups with Triality are Essentially the Same Thing
Title | Moufang Loops and Groups with Triality are Essentially the Same Thing PDF eBook |
Author | J. I. Hall |
Publisher | American Mathematical Soc. |
Pages | 206 |
Release | 2019-09-05 |
Genre | Mathematics |
ISBN | 1470436221 |
In 1925 Élie Cartan introduced the principal of triality specifically for the Lie groups of type D4, and in 1935 Ruth Moufang initiated the study of Moufang loops. The observation of the title in 1978 was made by Stephen Doro, who was in turn motivated by the work of George Glauberman from 1968. Here the author makes the statement precise in a categorical context. In fact the most obvious categories of Moufang loops and groups with triality are not equivalent, hence the need for the word “essentially.”
Matrix Functions of Bounded Type: An Interplay Between Function Theory and Operator Theory
Title | Matrix Functions of Bounded Type: An Interplay Between Function Theory and Operator Theory PDF eBook |
Author | Raúl E. Curto |
Publisher | American Mathematical Soc. |
Pages | 112 |
Release | 2019-09-05 |
Genre | Mathematics |
ISBN | 1470436248 |
In this paper, the authors study matrix functions of bounded type from the viewpoint of describing an interplay between function theory and operator theory. They first establish a criterion on the coprime-ness of two singular inner functions and obtain several properties of the Douglas-Shapiro-Shields factorizations of matrix functions of bounded type. They propose a new notion of tensored-scalar singularity, and then answer questions on Hankel operators with matrix-valued bounded type symbols. They also examine an interpolation problem related to a certain functional equation on matrix functions of bounded type; this can be seen as an extension of the classical Hermite-Fejér Interpolation Problem for matrix rational functions. The authors then extend the H∞-functional calculus to an H∞¯¯¯¯¯¯¯¯¯+H∞-functional calculus for the compressions of the shift. Next, the authors consider the subnormality of Toeplitz operators with matrix-valued bounded type symbols and, in particular, the matrix-valued version of Halmos's Problem 5 and then establish a matrix-valued version of Abrahamse's Theorem. They also solve a subnormal Toeplitz completion problem of 2×2 partial block Toeplitz matrices. Further, they establish a characterization of hyponormal Toeplitz pairs with matrix-valued bounded type symbols and then derive rank formulae for the self-commutators of hyponormal Toeplitz pairs.
Compact Quotients of Cahen-Wallach Spaces
Title | Compact Quotients of Cahen-Wallach Spaces PDF eBook |
Author | Ines Kath |
Publisher | American Mathematical Soc. |
Pages | 96 |
Release | 2020-02-13 |
Genre | Education |
ISBN | 1470441039 |
Indecomposable symmetric Lorentzian manifolds of non-constant curvature are called Cahen-Wallach spaces. Their isometry classes are described by continuous families of real parameters. The authors derive necessary and sufficient conditions for the existence of compact quotients of Cahen-Wallach spaces in terms of these parameters.
A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side
Title | A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side PDF eBook |
Author | Chen Wan |
Publisher | American Mathematical Soc. |
Pages | 102 |
Release | 2019-12-02 |
Genre | Education |
ISBN | 1470436868 |
Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case.