Maximal Cohen-Macaulay Modules over Cohen-Macaulay Rings
Title | Maximal Cohen-Macaulay Modules over Cohen-Macaulay Rings PDF eBook |
Author | Y. Yoshino |
Publisher | Cambridge University Press |
Pages | 0 |
Release | 1990-06-28 |
Genre | Mathematics |
ISBN | 9780521356947 |
The purpose of these notes is to explain in detail some topics on the intersection of commutative algebra, representation theory and singularity theory. They are based on lectures given in Tokyo, but also contain new research. It is the first cohesive account of the area and will provide a useful synthesis of recent research for algebraists.
Cohen-Macaulay Rings
Title | Cohen-Macaulay Rings PDF eBook |
Author | Winfried Bruns |
Publisher | Cambridge University Press |
Pages | 471 |
Release | 1998-06-18 |
Genre | Mathematics |
ISBN | 0521566746 |
In the last two decades Cohen-Macaulay rings and modules have been central topics in commutative algebra. This book meets the need for a thorough, self-contained introduction to the homological and combinatorial aspects of the theory of Cohen-Macaulay rings, Gorenstein rings, local cohomology, and canonical modules. A separate chapter is devoted to Hilbert functions (including Macaulay's theorem) and numerical invariants derived from them. The authors emphasize the study of explicit, specific rings, making the presentation as concrete as possible. So the general theory is applied to Stanley-Reisner rings, semigroup rings, determinantal rings, and rings of invariants. Their connections with combinatorics are highlighted, e.g. Stanley's upper bound theorem or Ehrhart's reciprocity law for rational polytopes. The final chapters are devoted to Hochster's theorem on big Cohen-Macaulay modules and its applications, including Peskine-Szpiro's intersection theorem, the Evans-Griffith syzygy theorem, bounds for Bass numbers, and tight closure. Throughout each chapter the authors have supplied many examples and exercises which, combined with the expository style, will make the book very useful for graduate courses in algebra. As the only modern, broad account of the subject it will be essential reading for researchers in commutative algebra.
Cohen-Macaulay Representations
Title | Cohen-Macaulay Representations PDF eBook |
Author | Graham J. Leuschke |
Publisher | American Mathematical Soc. |
Pages | 390 |
Release | 2012-05-02 |
Genre | Mathematics |
ISBN | 0821875817 |
This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conjectures--is covered clearly and completely. Much of the content has never before appeared in book form. Examples include the representation theory of Artinian pairs and Burban-Drozd's related construction in dimension two, an introduction to the McKay correspondence from the point of view of maximal Cohen-Macaulay modules, Auslander-Buchweitz's MCM approximation theory, and a careful treatment of nonzero characteristic. The remaining seven chapters present results on bounded and countable CM type and on the representation theory of totally reflexive modules.
Special Conditions on Maximal Cohen-Macaulay Modules, and Applications to the Theory of Multiplicities
Title | Special Conditions on Maximal Cohen-Macaulay Modules, and Applications to the Theory of Multiplicities PDF eBook |
Author | Douglas Hanes |
Publisher | |
Pages | 238 |
Release | 1999 |
Genre | |
ISBN |
Maximal Cohen-Macaulay Modules Over Cohen-Macaulay Rings
Title | Maximal Cohen-Macaulay Modules Over Cohen-Macaulay Rings PDF eBook |
Author | Yūji Yoshino |
Publisher | Cambridge University Press |
Pages | 191 |
Release | 1990-06-28 |
Genre | Mathematics |
ISBN | 0521356946 |
The purpose of these notes is to explain in detail some topics on the intersection of commutative algebra, representation theory and singularity theory. They are based on lectures given in Tokyo, but also contain new research. It is the first cohesive account of the area and will provide a useful synthesis of recent research for algebraists.
Maximal Cohen-Macaulay Modules Over Cohen-Macaulay Rings
Title | Maximal Cohen-Macaulay Modules Over Cohen-Macaulay Rings PDF eBook |
Author | Y. Yoshino |
Publisher | |
Pages | 188 |
Release | 1990 |
Genre | Cohen-Macaulay modules |
ISBN | 9781107366381 |
The purpose of these notes is to explain in detail some topics on the intersection of commutative algebra, representation theory and singularity theory. They are based on lectures given in Tokyo, but also contain new research. It is the first cohesive account of the area and will provide a useful synthesis of recent research for algebraists.
Stable Module Theory
Title | Stable Module Theory PDF eBook |
Author | Maurice Auslander |
Publisher | American Mathematical Soc. |
Pages | 150 |
Release | 1969 |
Genre | Commutative rings |
ISBN | 0821812947 |
The notions of torsion and torsion freeness have played a very important role in module theory--particularly in the study of modules over integral domains. Furthermore, the use of homological techniques in this connection has been well established. It is the aim of this paper to extend these techniques and to show that this extension leads naturally to several new concepts (e.g. k-torsion freeness and Gorenstein dimension) which are useful in the classification of modules and rings.