Quantum Theory for Mathematicians

Quantum Theory for Mathematicians
Title Quantum Theory for Mathematicians PDF eBook
Author Brian C. Hall
Publisher Springer Science & Business Media
Pages 566
Release 2013-06-19
Genre Science
ISBN 1461471168

Download Quantum Theory for Mathematicians Book in PDF, Epub and Kindle

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians
Title Quantum Mechanics for Mathematicians PDF eBook
Author Leon Armenovich Takhtadzhi͡an
Publisher American Mathematical Soc.
Pages 410
Release 2008
Genre Mathematics
ISBN 0821846302

Download Quantum Mechanics for Mathematicians Book in PDF, Epub and Kindle

Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.

Mathematical Quantum Theory II

Mathematical Quantum Theory II
Title Mathematical Quantum Theory II PDF eBook
Author Joel S. Feldman
Publisher American Mathematical Soc.
Pages 316
Release 1995
Genre Science
ISBN 9780821870495

Download Mathematical Quantum Theory II Book in PDF, Epub and Kindle

Lectures on Quantum Mechanics for Mathematics Students

Lectures on Quantum Mechanics for Mathematics Students
Title Lectures on Quantum Mechanics for Mathematics Students PDF eBook
Author L. D. Faddeev
Publisher American Mathematical Soc.
Pages 250
Release 2009
Genre Science
ISBN 082184699X

Download Lectures on Quantum Mechanics for Mathematics Students Book in PDF, Epub and Kindle

Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.

Mathematical Concepts of Quantum Mechanics

Mathematical Concepts of Quantum Mechanics
Title Mathematical Concepts of Quantum Mechanics PDF eBook
Author Stephen J. Gustafson
Publisher Springer Science & Business Media
Pages 380
Release 2011-09-24
Genre Mathematics
ISBN 3642218660

Download Mathematical Concepts of Quantum Mechanics Book in PDF, Epub and Kindle

The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.

Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics
Title Mathematics of Classical and Quantum Physics PDF eBook
Author Frederick W. Byron
Publisher Courier Corporation
Pages 674
Release 2012-04-26
Genre Science
ISBN 0486135063

Download Mathematics of Classical and Quantum Physics Book in PDF, Epub and Kindle

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Fundamental Mathematical Structures of Quantum Theory

Fundamental Mathematical Structures of Quantum Theory
Title Fundamental Mathematical Structures of Quantum Theory PDF eBook
Author Valter Moretti
Publisher Springer
Pages 345
Release 2019-06-20
Genre Science
ISBN 3030183467

Download Fundamental Mathematical Structures of Quantum Theory Book in PDF, Epub and Kindle

This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.