Mathematical Models for Society and Biology
Title | Mathematical Models for Society and Biology PDF eBook |
Author | Edward Beltrami |
Publisher | Academic Press |
Pages | 281 |
Release | 2013-06-19 |
Genre | Social Science |
ISBN | 0124046932 |
Mathematical Models for Society and Biology, 2e, is a useful resource for researchers, graduate students, and post-docs in the applied mathematics and life science fields. Mathematical modeling is one of the major subfields of mathematical biology. A mathematical model may be used to help explain a system, to study the effects of different components, and to make predictions about behavior. Mathematical Models for Society and Biology, 2e, draws on current issues to engagingly relate how to use mathematics to gain insight into problems in biology and contemporary society. For this new edition, author Edward Beltrami uses mathematical models that are simple, transparent, and verifiable. Also new to this edition is an introduction to mathematical notions that every quantitative scientist in the biological and social sciences should know. Additionally, each chapter now includes a detailed discussion on how to formulate a reasonable model to gain insight into the specific question that has been introduced. - Offers 40% more content – 5 new chapters in addition to revisions to existing chapters - Accessible for quick self study as well as a resource for courses in molecular biology, biochemistry, embryology and cell biology, medicine, ecology and evolution, bio-mathematics, and applied math in general - Features expanded appendices with an extensive list of references, solutions to selected exercises in the book, and further discussion of various mathematical methods introduced in the book
Mathematical Models in Biology
Title | Mathematical Models in Biology PDF eBook |
Author | Leah Edelstein-Keshet |
Publisher | SIAM |
Pages | 629 |
Release | 1988-01-01 |
Genre | Mathematics |
ISBN | 9780898719147 |
Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.
A Primer in Mathematical Models in Biology
Title | A Primer in Mathematical Models in Biology PDF eBook |
Author | Lee A. Segel |
Publisher | SIAM |
Pages | 435 |
Release | 2013-05-09 |
Genre | Science |
ISBN | 1611972493 |
A textbook on mathematical modelling techniques with powerful applications to biology, combining theoretical exposition with exercises and examples.
Mathematical Biology
Title | Mathematical Biology PDF eBook |
Author | Avner Friedman |
Publisher | American Mathematical Soc. |
Pages | 112 |
Release | 2018-06-14 |
Genre | Mathematics |
ISBN | 1470447150 |
The fast growing field of mathematical biology addresses biological questions using mathematical models from areas such as dynamical systems, probability, statistics, and discrete mathematics. This book considers models that are described by systems of partial differential equations, and it focuses on modeling, rather than on numerical methods and simulations. The models studied are concerned with population dynamics, cancer, risk of plaque growth associated with high cholesterol, and wound healing. A rich variety of open problems demonstrates the exciting challenges and opportunities for research at the interface of mathematics and biology. This book primarily addresses students and researchers in mathematics who do not necessarily have any background in biology and who may have had little exposure to PDEs.
A Course in Mathematical Biology
Title | A Course in Mathematical Biology PDF eBook |
Author | Gerda de Vries |
Publisher | SIAM |
Pages | 307 |
Release | 2006-07-01 |
Genre | Mathematics |
ISBN | 0898718252 |
This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.
Mathematical Models of Social Evolution
Title | Mathematical Models of Social Evolution PDF eBook |
Author | Richard McElreath |
Publisher | University of Chicago Press |
Pages | 429 |
Release | 2008-09-15 |
Genre | Social Science |
ISBN | 0226558282 |
Over the last several decades, mathematical models have become central to the study of social evolution, both in biology and the social sciences. But students in these disciplines often seriously lack the tools to understand them. A primer on behavioral modeling that includes both mathematics and evolutionary theory, Mathematical Models of Social Evolution aims to make the student and professional researcher in biology and the social sciences fully conversant in the language of the field. Teaching biological concepts from which models can be developed, Richard McElreath and Robert Boyd introduce readers to many of the typical mathematical tools that are used to analyze evolutionary models and end each chapter with a set of problems that draw upon these techniques. Mathematical Models of Social Evolution equips behaviorists and evolutionary biologists with the mathematical knowledge to truly understand the models on which their research depends. Ultimately, McElreath and Boyd’s goal is to impart the fundamental concepts that underlie modern biological understandings of the evolution of behavior so that readers will be able to more fully appreciate journal articles and scientific literature, and start building models of their own.
Mathematical Models in Biology
Title | Mathematical Models in Biology PDF eBook |
Author | Elizabeth Spencer Allman |
Publisher | Cambridge University Press |
Pages | 388 |
Release | 2004 |
Genre | Mathematics |
ISBN | 9780521525862 |
This introductory textbook on mathematical biology focuses on discrete models across a variety of biological subdisciplines. Biological topics treated include linear and non-linear models of populations, Markov models of molecular evolution, phylogenetic tree construction, genetics, and infectious disease models. The coverage of models of molecular evolution and phylogenetic tree construction from DNA sequence data is unique among books at this level. Computer investigations with MATLAB are incorporated throughout, in both exercises and more extensive projects, to give readers hands-on experience with the mathematical models developed. MATLAB programs accompany the text. Mathematical tools, such as matrix algebra, eigenvector analysis, and basic probability, are motivated by biological models and given self-contained developments, so that mathematical prerequisites are minimal.