Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease

Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease
Title Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease PDF eBook
Author Gennady Bocharov
Publisher Frontiers Media SA
Pages 278
Release 2020-02-24
Genre
ISBN 2889634612

Download Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease Book in PDF, Epub and Kindle

The immune system provides the host organism with defense mechanisms against invading pathogens and tumor development and it plays an active role in tissue and organ regeneration. Deviations from the normal physiological functioning of the immune system can lead to the development of diseases with various pathologies including autoimmune diseases and cancer. Modern research in immunology is characterized by an unprecedented level of detail that has progressed towards viewing the immune system as numerous components that function together as a whole network. Currently, we are facing significant difficulties in analyzing the data being generated from high-throughput technologies for understanding immune system dynamics and functions, a problem known as the ‘curse of dimensionality’. As the mainstream research in mathematical immunology is based on low-resolution models, a fundamental question is how complex the mathematical models should be? To respond to this challenging issue, we advocate a hypothesis-driven approach to formulate and apply available mathematical modelling technologies for understanding the complexity of the immune system. Moreover, pure empirical analyses of immune system behavior and the system’s response to external perturbations can only produce a static description of the individual components of the immune system and the interactions between them. Shifting our view of the immune system from a static schematic perception to a dynamic multi-level system is a daunting task. It requires the development of appropriate mathematical methodologies for the holistic and quantitative analysis of multi-level molecular and cellular networks. Their coordinated behavior is dynamically controlled via distributed feedback and feedforward mechanisms which altogether orchestrate immune system functions. The molecular regulatory loops inherent to the immune system that mediate cellular behaviors, e.g. exhaustion, suppression, activation and tuning, can be analyzed using mathematical categories such as multi-stability, switches, ultra-sensitivity, distributed system, graph dynamics, or hierarchical control. GB is supported by the Russian Science Foundation (grant 18-11-00171). AM is also supported by grants from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER grant no. SAF2016-75505-R, the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0370) and the Russian Science Foundation (grant 18-11-00171).

Killer Cell Dynamics

Killer Cell Dynamics
Title Killer Cell Dynamics PDF eBook
Author Dominik Wodarz
Publisher Springer Science & Business Media
Pages 226
Release 2007-04-05
Genre Mathematics
ISBN 0387687335

Download Killer Cell Dynamics Book in PDF, Epub and Kindle

This book reviews how mathematical and computational approaches can be useful to help us understand how killer T-cell responses work to fight viral infections. It also demonstrates, in a writing style that exemplifies the point, that such mathematical and computational approaches are most valuable when coupled with experimental work through interdisciplinary collaborations. Designed to be useful to immunoligists and viroligists without extensive computational background, the book covers a broad variety of topics, including both basic immunological questions and the application of these insights to the understanding and treatment of pathogenic human diseases.

Mathematical, Computational and Experimental T Cell Immunology

Mathematical, Computational and Experimental T Cell Immunology
Title Mathematical, Computational and Experimental T Cell Immunology PDF eBook
Author Carmen Molina-París
Publisher Springer Nature
Pages 300
Release 2021-01-04
Genre Medical
ISBN 3030572048

Download Mathematical, Computational and Experimental T Cell Immunology Book in PDF, Epub and Kindle

Mathematical, statistical, and computational methods enable multi-disciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. This volume collects a representative sample of studies in T cell immunology that illustrate the benefits of modelling-experimental collaborations and which have proven valuable or even ground-breaking. Studies include thymic selection, T cell repertoire diversity, T cell homeostasis in health and disease, T cell-mediated immune responses, T cell memory, T cell signalling and analysis of flow cytometry data sets. Contributing authors are leading scientists in the area of experimental, computational, and mathematical immunology. Each chapter includes state-of-the-art and pedagogical content, making this book accessible to readers with limited experience in T cell immunology and/or mathematical and computational modelling.

A Survey of Models for Tumor-Immune System Dynamics

A Survey of Models for Tumor-Immune System Dynamics
Title A Survey of Models for Tumor-Immune System Dynamics PDF eBook
Author John A. Adam
Publisher Springer Science & Business Media
Pages 357
Release 2012-10-06
Genre Mathematics
ISBN 0817681191

Download A Survey of Models for Tumor-Immune System Dynamics Book in PDF, Epub and Kindle

Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, im munology, medicine, physics and, we believe, mathematics. Certainly, bi ologists and immunologists will make the greatest contribution to the re search. However, it is now increasingly recognized that mathematics and computer science may well able to make major contributions to such prob lems. We cannot expect mathematicians alone to solve fundamental prob lems in immunology and (in particular) cancer research, but valuable sup port, however modest, can be provided by mathematicians to the research aspirations of biologists and immunologists working in this field.

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution
Title A Biologist's Guide to Mathematical Modeling in Ecology and Evolution PDF eBook
Author Sarah P. Otto
Publisher Princeton University Press
Pages 745
Release 2011-09-19
Genre Science
ISBN 1400840910

Download A Biologist's Guide to Mathematical Modeling in Ecology and Evolution Book in PDF, Epub and Kindle

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available

Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling

Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling
Title Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling PDF eBook
Author Dominik Wodarz
Publisher World Scientific
Pages 266
Release 2005-01-24
Genre Science
ISBN 9814481874

Download Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling Book in PDF, Epub and Kindle

The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.

Mathematical Models and Immune Cell Biology

Mathematical Models and Immune Cell Biology
Title Mathematical Models and Immune Cell Biology PDF eBook
Author Carmen Molina-París
Publisher Springer Science & Business Media
Pages 413
Release 2011-05-05
Genre Medical
ISBN 1441977252

Download Mathematical Models and Immune Cell Biology Book in PDF, Epub and Kindle

Whole new areas of immunological research are emerging from the analysis of experimental data, going beyond statistics and parameter estimation into what an applied mathematician would recognise as modelling of dynamical systems. Stochastic methods are increasingly important, because stochastic models are closer to the Brownian reality of the cellular and sub-cellular world.