Mathematical Intuitionism: Introduction to Proof Theory
Title | Mathematical Intuitionism: Introduction to Proof Theory PDF eBook |
Author | Al'bert Grigor'evi_ Dragalin |
Publisher | American Mathematical Soc. |
Pages | 242 |
Release | 1988-12-31 |
Genre | Mathematics |
ISBN | 0821845209 |
In the area of mathematical logic, a great deal of attention is now being devoted to the study of nonclassical logics. This book intends to present the most important methods of proof theory in intuitionistic logic and to acquaint the reader with the principal axiomatic theories based on intuitionistic logic.
An Introduction to Proof Theory
Title | An Introduction to Proof Theory PDF eBook |
Author | Paolo Mancosu |
Publisher | Oxford University Press |
Pages | 336 |
Release | 2021-08-12 |
Genre | Philosophy |
ISBN | 0192649299 |
An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.
Handbook of Proof Theory
Title | Handbook of Proof Theory PDF eBook |
Author | S.R. Buss |
Publisher | Elsevier |
Pages | 823 |
Release | 1998-07-09 |
Genre | Mathematics |
ISBN | 0080533183 |
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Proof Theory
Title | Proof Theory PDF eBook |
Author | Katalin Bimbo |
Publisher | CRC Press |
Pages | 386 |
Release | 2014-08-20 |
Genre | Mathematics |
ISBN | 1466564687 |
Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi
Elements of Intuitionism
Title | Elements of Intuitionism PDF eBook |
Author | Michael Dummett |
Publisher | Oxford University Press |
Pages | 350 |
Release | 2000 |
Genre | Mathematics |
ISBN | 9780198505242 |
This is a long-awaited new edition of one of the best known Oxford Logic Guides. The book gives an informal but thorough introduction to intuitionistic mathematics, leading the reader gently through the fundamental mathematical and philosophical concepts. The treatment of various topics has been completely revised for this second edition. Brouwer's proof of the Bar Theorem has been reworked, the account of valuation systems simplified, and the treatment of generalized Beth Trees and the completeness of intuitionistic first-order logic rewritten. Readers are assumed to have some knowledge of classical formal logic and a general awareness of the history of intuitionism.
Proofs and Ideas
Title | Proofs and Ideas PDF eBook |
Author | B. Sethuraman |
Publisher | American Mathematical Society |
Pages | 334 |
Release | 2021-12-02 |
Genre | Mathematics |
ISBN | 1470465140 |
Proofs and Ideas serves as a gentle introduction to advanced mathematics for students who previously have not had extensive exposure to proofs. It is intended to ease the student's transition from algorithmic mathematics to the world of mathematics that is built around proofs and concepts. The spirit of the book is that the basic tools of abstract mathematics are best developed in context and that creativity and imagination are at the core of mathematics. So, while the book has chapters on statements and sets and functions and induction, the bulk of the book focuses on core mathematical ideas and on developing intuition. Along with chapters on elementary combinatorics and beginning number theory, this book contains introductory chapters on real analysis, group theory, and graph theory that serve as gentle first exposures to their respective areas. The book contains hundreds of exercises, both routine and non-routine. This book has been used for a transition to advanced mathematics courses at California State University, Northridge, as well as for a general education course on mathematical reasoning at Krea University, India.
Proof Analysis
Title | Proof Analysis PDF eBook |
Author | Sara Negri |
Publisher | Cambridge University Press |
Pages | 279 |
Release | 2011-09-29 |
Genre | Mathematics |
ISBN | 1139501526 |
This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians.