Magnetic Cell Separation
Title | Magnetic Cell Separation PDF eBook |
Author | |
Publisher | Elsevier |
Pages | 473 |
Release | 2011-08-31 |
Genre | Science |
ISBN | 0080553508 |
Cell separation is at the core of current methods in experimental biology and medicine. Its importance is illustrated by the large number of physical and biochemical principles that have been evaluated for application to cell separation. The development of cell separation methods is driven by the needs of biological and medical research, and the ever-increasing demands for sensitivity, selectivity, yield, timeliness and economy of the process. The interdisciplinary nature of research in this area and the volume of information available in research publications and conferences necessitates a basic description of the fundamental processes involved in magnetic cell separation that may help the user in navigating this wealth of information available online and in scientific publications. This book will appeal to researchers in many areas utilizing this technique, including those working in cell biology, clinical research, inorganic chemistry, biochemistry, chemical engineering, materials science, physics and electrical engineering. - Provides examples of how to calculate the volume magnetic susceptibility, a fundamental quantity for calculating the magnetic force acting on a cell, from various types of magnetic susceptibilities available in literature - Introduces the elements of magnetostatics as they apply to cell magnetization and the magnetization of magnetic micro- and nano- particles used for cell separation - Describes the parameters used to determine cell magnetophoresis
Magnetic Cell Separation
Title | Magnetic Cell Separation PDF eBook |
Author | |
Publisher | Elsevier Science |
Pages | 486 |
Release | 2007-11-15 |
Genre | Science |
ISBN | 9780444527547 |
Cell separation is at the core of current methods in experimental biology and medicine. Its importance is illustrated by the large number of physical and biochemical principles that have been evaluated for application to cell separation. The development of cell separation methods is driven by the needs of biological and medical research, and the ever-increasing demands for sensitivity, selectivity, yield, timeliness and economy of the process. The interdisciplinary nature of research in this area and the volume of information available in research publications and conferences necessitates a basic description of the fundamental processes involved in magnetic cell separation that may help the user in navigating this wealth of information available online and in scientific publications. This book will appeal to researchers in many areas utilizing this technique, including those working in cell biology, clinical research, inorganic chemistry, biochemistry, chemical engineering, materials science, physics and electrical engineering. Provides examples of how to calculate the volume magnetic susceptibility, a fundamental quantity for calculating the magnetic force acting on a cell, from various types of magnetic susceptibilities available in literature Introduces the elements of magnetostatics as they apply to cell magnetization and the magnetization of magnetic micro- and nano- particles used for cell separation Describes the parameters used to determine cell magnetophoresis
Microtechnology for Cell Manipulation and Sorting
Title | Microtechnology for Cell Manipulation and Sorting PDF eBook |
Author | Wonhee Lee |
Publisher | Springer |
Pages | 287 |
Release | 2016-10-05 |
Genre | Technology & Engineering |
ISBN | 3319441396 |
This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.
Magnetic Materials and Technologies for Medical Applications
Title | Magnetic Materials and Technologies for Medical Applications PDF eBook |
Author | Alexander Tishin |
Publisher | Woodhead Publishing |
Pages | 664 |
Release | 2021-11-18 |
Genre | Technology & Engineering |
ISBN | 0128225335 |
The study of electromagnetic fields in the treatment of various diseases is not a new one; however, we are still learning how magnetic fields impact the human body and its organs. Many novel magnetic materials and technologies could potentially transform medicine. Magnetic Materials and Technologies for Medical Applications explores these current and emerging technologies. Beginning with foundational knowledge on the basics of magnetism, this book then details the approaches and methods used in the creation of novel magnetic materials and devices. This book also discusses current technologies and applications, as well as the commercial aspects of introducing new technologies to the field. This book serves as an excellent introduction for early career researchers or a reference to more experienced researchers who wish to stay abreast of current trends and developing technologies in the field. This book could also be used by clinicians working in medicine and companies interested in establishing new medical technologies. Each chapter provides novel tasks for future scientific and technology research studies. - Outlines the basics of magnetism for enhanced understanding of its applications in medicine - Covers novel magnetic devices as well as technologies still under development, including magnetic brain stimulation, biosensors, and nanoparticles for drug delivery - Explores commercial opportunities and obstacles to market entry for new magnetic materials and technologies for the medical field
Bioprocessing for Cell-Based Therapies
Title | Bioprocessing for Cell-Based Therapies PDF eBook |
Author | Che J. Connon |
Publisher | John Wiley & Sons |
Pages | 276 |
Release | 2017-02-06 |
Genre | Science |
ISBN | 1118743415 |
With contributions from leading, international academics and industrial practitioners, Bioprocessing for Cell-Based Therapies explores the very latest techniques and guidelines in bioprocess production to meet safety, regulatory and ethical requirements, for the production of therapeutic cells, including stem cells. An authoritative, cutting-edge handbook on bioprocessing for the production of therapeutic cells with extensive illustrations in full colour throughout An authoritative, cutting-edge handbook on bioprocessing for the production of therapeutic cells with extensive illustrations in full colour throughout In depth discussion of the application of cell therapy including methods used in the delivery of cells to the patient Includes contributions from experts in both academia and industry, combining a practical approach with cutting edge research The only handbook currently available to provide a state of the art guide to Bioprocessing covering the complete range of cell-based therapies, from experts in academia and industry
Stem Cell Bioprocessing
Title | Stem Cell Bioprocessing PDF eBook |
Author | Tiago G. Fernandes |
Publisher | Elsevier |
Pages | 236 |
Release | 2013-11-15 |
Genre | Science |
ISBN | 1908818301 |
Stem cell bioprocessing describes the main large-scale bioprocessing strategies for both stem cell culture and purification, envisaging the application of these cells for regenerative medicine and drug screening. Bioreactor configurations are described, including their applications for stem cell expansion, and stem cell separation techniques such as isolation and purification are discussed. Basic definitions are provided concerning the different types of stem cells, from adult stem cells to the more recent induced pluripotent stem cells. The main characteristics of these different stem cell types are described, alongside the molecular mechanisms underlying their self-renewal and differentiation. The book also focuses on methodologies currently used for in vitro stem cell culture under static conditions, including the challenge of xeno-free culture conditions, as well as culture parameters that influence stem cell culture. Approaches for both stem cell culture and separation in micro-scale conditions are presented, including the use of cellular microarrays for high-throughput screening of the effect of both soluble and extracellular matrix molecules. A further section is dedicated to application of stem cells for regenerative medicine. - Maintains a unique focus on both the basic stem cell biology concepts, and their translation to large-scale bioprocessing approaches - Envisages the use of stem cells in regenerative medicine and drug screening applications - Discusses the application of microscale techniques as a tool to perform basic stem cell biology studies
Scientific and Clinical Applications of Magnetic Carriers
Title | Scientific and Clinical Applications of Magnetic Carriers PDF eBook |
Author | Urs Häfeli |
Publisher | Springer Science & Business Media |
Pages | 618 |
Release | 2013-11-11 |
Genre | Science |
ISBN | 1475764820 |
The discovery of uniform latex particles by polymer chemists of the Dow Chemical Company nearly 50 years ago opened up new exciting fields for scientists and physicians and established many new biomedical applications. Many in vitro diagnostic tests such as the latex agglutination tests, analytical cell and phagocytosis tests have since become rou tine. They were all developed on the basis of small particles bound to biological active molecules and fluorescent and radioactive markers. Further developments are ongoing, with the focus now shifted to applications of polymer particles in the controlled and di rected transport of drugs in living systems. Four important factors make microspheres interesting for in vivo applications: First, biocompatible polymer particles can be used to transport known amounts of drug and re lease them in a controlled fashion. Second, particles can be made of materials which bio degrade in living organisms without doing any harm. Third, particles with modified surfaces are able to avoid rapid capture by the reticuloendothelial system and therefore en hance their blood circulation time. Fourth, combining particles with specific molecules may allow organ-directed targeting.