Foundations of Analysis
Title | Foundations of Analysis PDF eBook |
Author | Joseph L. Taylor |
Publisher | American Mathematical Soc. |
Pages | 411 |
Release | 2012 |
Genre | Mathematics |
ISBN | 0821889842 |
Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.
Foundations of Mathematical Analysis
Title | Foundations of Mathematical Analysis PDF eBook |
Author | Richard Johnsonbaugh |
Publisher | Courier Corporation |
Pages | 450 |
Release | 2012-09-11 |
Genre | Mathematics |
ISBN | 0486134776 |
Definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. More than 750 exercises; some hints and solutions. 1981 edition.
Foundations of Complex Analysis in Non Locally Convex Spaces
Title | Foundations of Complex Analysis in Non Locally Convex Spaces PDF eBook |
Author | A. Bayoumi |
Publisher | Elsevier |
Pages | 305 |
Release | 2003-11-11 |
Genre | Mathematics |
ISBN | 008053192X |
All the existing books in Infinite Dimensional Complex Analysis focus on the problems of locally convex spaces. However, the theory without convexity condition is covered for the first time in this book. This shows that we are really working with a new, important and interesting field.Theory of functions and nonlinear analysis problems are widespread in the mathematical modeling of real world systems in a very broad range of applications. During the past three decades many new results from the author have helped to solve multiextreme problems arising from important situations, non-convex and non linear cases, in function theory.Foundations of Complex Analysis in Non Locally Convex Spaces is a comprehensive book that covers the fundamental theorems in Complex and Functional Analysis and presents much new material.The book includes generalized new forms of: Hahn-Banach Theorem, Multilinear maps, theory of polynomials, Fixed Point Theorems, p-extreme points and applications in Operations Research, Krein-Milman Theorem, Quasi-differential Calculus, Lagrange Mean-Value Theorems, Taylor series, Quasi-holomorphic and Quasi-analytic maps, Quasi-Analytic continuations, Fundamental Theorem of Calculus, Bolzano's Theorem, Mean-Value Theorem for Definite Integral, Bounding and weakly-bounding (limited) sets, Holomorphic Completions, and Levi problem.Each chapter contains illustrative examples to help the student and researcher to enhance his knowledge of theory of functions.The new concept of Quasi-differentiability introduced by the author represents the backbone of the theory of Holomorphy for non-locally convex spaces. In fact it is different but much stronger than the Frechet one.The book is intended not only for Post-Graduate (M.Sc.& Ph.D.) students and researchers in Complex and Functional Analysis, but for all Scientists in various disciplines whom need nonlinear or non-convex analysis and holomorphy methods without convexity conditions to model and solve problems.bull; The book contains new generalized versions of:i) Fundamental Theorem of Calculus, Lagrange Mean-Value Theorem in real and complex cases, Hahn-Banach Theorems, Bolzano Theorem, Krein-Milman Theorem, Mean value Theorem for Definite Integral, and many others.ii) Fixed Point Theorems of Bruower, Schauder and Kakutani's. bull; The book contains some applications in Operations research and non convex analysis as a consequence of the new concept p-Extreme points given by the author.bull; The book contains a complete theory for Taylor Series representations of the different types of holomorphic maps in F-spaces without convexity conditions. bull; The book contains a general new concept of differentiability stronger than the Frechet one. This implies a new Differentiable Calculus called Quasi-differential (or Bayoumi differential) Calculus. It is due to the author's discovery in 1995.bull; The book contains the theory of polynomials and Banach Stienhaus theorem in non convex spaces.
Differential Calculus in Locally Convex Spaces
Title | Differential Calculus in Locally Convex Spaces PDF eBook |
Author | H.H. Keller |
Publisher | Springer |
Pages | 143 |
Release | 2006-11-15 |
Genre | Mathematics |
ISBN | 3540372679 |
Algebraic Analysis of Differential Equations
Title | Algebraic Analysis of Differential Equations PDF eBook |
Author | T. Aoki |
Publisher | Springer Science & Business Media |
Pages | 349 |
Release | 2009-03-15 |
Genre | Mathematics |
ISBN | 4431732403 |
This volume contains 23 articles on algebraic analysis of differential equations and related topics, most of which were presented as papers at the conference "Algebraic Analysis of Differential Equations – from Microlocal Analysis to Exponential Asymptotics" at Kyoto University in 2005. This volume is dedicated to Professor Takahiro Kawai, who is one of the creators of microlocal analysis and who introduced the technique of microlocal analysis into exponential asymptotics.
Teaching and Learning of Calculus
Title | Teaching and Learning of Calculus PDF eBook |
Author | David Bressoud |
Publisher | Springer |
Pages | 44 |
Release | 2016-06-14 |
Genre | Education |
ISBN | 3319329758 |
This survey focuses on the main trends in the field of calculus education. Despite their variety, the findings reveal a cornerstone issue that is strongly linked to the formalism of calculus concepts and to the difficulties it generates in the learning and teaching process. As a complement to the main text, an extended bibliography with some of the most important references on this topic is included. Since the diversity of the research in the field makes it difficult to produce an exhaustive state-of-the-art summary, the authors discuss recent developments that go beyond this survey and put forward new research questions.
Foundations of Differentiable Manifolds and Lie Groups
Title | Foundations of Differentiable Manifolds and Lie Groups PDF eBook |
Author | Frank W. Warner |
Publisher | Springer Science & Business Media |
Pages | 283 |
Release | 2013-11-11 |
Genre | Mathematics |
ISBN | 1475717997 |
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.