Life-Cycle Decisions for Biomedical Data
Title | Life-Cycle Decisions for Biomedical Data PDF eBook |
Author | National Academies of Sciences, Engineering, and Medicine |
Publisher | National Academies Press |
Pages | 185 |
Release | 2020-10-04 |
Genre | Science |
ISBN | 0309670039 |
Biomedical research results in the collection and storage of increasingly large and complex data sets. Preserving those data so that they are discoverable, accessible, and interpretable accelerates scientific discovery and improves health outcomes, but requires that researchers, data curators, and data archivists consider the long-term disposition of data and the costs of preserving, archiving, and promoting access to them. Life Cycle Decisions for Biomedical Data examines and assesses approaches and considerations for forecasting costs for preserving, archiving, and promoting access to biomedical research data. This report provides a comprehensive conceptual framework for cost-effective decision making that encourages data accessibility and reuse for researchers, data managers, data archivists, data scientists, and institutions that support platforms that enable biomedical research data preservation, discoverability, and use.
Life-Cycle Decisions for Biomedical Data
Title | Life-Cycle Decisions for Biomedical Data PDF eBook |
Author | National Academies of Sciences, Engineering, and Medicine |
Publisher | National Academies Press |
Pages | 185 |
Release | 2020-09-04 |
Genre | Science |
ISBN | 0309670063 |
Biomedical research results in the collection and storage of increasingly large and complex data sets. Preserving those data so that they are discoverable, accessible, and interpretable accelerates scientific discovery and improves health outcomes, but requires that researchers, data curators, and data archivists consider the long-term disposition of data and the costs of preserving, archiving, and promoting access to them. Life Cycle Decisions for Biomedical Data examines and assesses approaches and considerations for forecasting costs for preserving, archiving, and promoting access to biomedical research data. This report provides a comprehensive conceptual framework for cost-effective decision making that encourages data accessibility and reuse for researchers, data managers, data archivists, data scientists, and institutions that support platforms that enable biomedical research data preservation, discoverability, and use.
Sharing Clinical Trial Data
Title | Sharing Clinical Trial Data PDF eBook |
Author | Institute of Medicine |
Publisher | National Academies Press |
Pages | 236 |
Release | 2015-04-20 |
Genre | Medical |
ISBN | 0309316324 |
Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.
Data Analytics in Biomedical Engineering and Healthcare
Title | Data Analytics in Biomedical Engineering and Healthcare PDF eBook |
Author | Kun Chang Lee |
Publisher | Academic Press |
Pages | 298 |
Release | 2020-10-18 |
Genre | Science |
ISBN | 0128193158 |
Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks
Strategies in Biomedical Data Science
Title | Strategies in Biomedical Data Science PDF eBook |
Author | Jay A. Etchings |
Publisher | John Wiley & Sons |
Pages | 415 |
Release | 2016-12-27 |
Genre | Medical |
ISBN | 111925597X |
An essential guide to healthcare data problems, sources, and solutions Strategies in Biomedical Data Science provides medical professionals with much-needed guidance toward managing the increasing deluge of healthcare data. Beginning with a look at our current top-down methodologies, this book demonstrates the ways in which both technological development and more effective use of current resources can better serve both patient and payer. The discussion explores the aggregation of disparate data sources, current analytics and toolsets, the growing necessity of smart bioinformatics, and more as data science and biomedical science grow increasingly intertwined. You'll dig into the unknown challenges that come along with every advance, and explore the ways in which healthcare data management and technology will inform medicine, politics, and research in the not-so-distant future. Real-world use cases and clear examples are featured throughout, and coverage of data sources, problems, and potential mitigations provides necessary insight for forward-looking healthcare professionals. Big Data has been a topic of discussion for some time, with much attention focused on problems and management issues surrounding truly staggering amounts of data. This book offers a lifeline through the tsunami of healthcare data, to help the medical community turn their data management problem into a solution. Consider the data challenges personalized medicine entails Explore the available advanced analytic resources and tools Learn how bioinformatics as a service is quickly becoming reality Examine the future of IOT and the deluge of personal device data The sheer amount of healthcare data being generated will only increase as both biomedical research and clinical practice trend toward individualized, patient-specific care. Strategies in Biomedical Data Science provides expert insight into the kind of robust data management that is becoming increasingly critical as healthcare evolves.
Leveraging Biomedical and Healthcare Data
Title | Leveraging Biomedical and Healthcare Data PDF eBook |
Author | Firas Kobeissy |
Publisher | Academic Press |
Pages | 228 |
Release | 2018-11-23 |
Genre | Medical |
ISBN | 012809561X |
Leveraging Biomedical and Healthcare Data: Semantics, Analytics and Knowledge provides an overview of the approaches used in semantic systems biology, introduces novel areas of its application, and describes step-wise protocols for transforming heterogeneous data into useful knowledge that can influence healthcare and biomedical research. Given the astronomical increase in the number of published reports, papers, and datasets over the last few decades, the ability to curate this data has become a new field of biomedical and healthcare research. This book discusses big data text-based mining to better understand the molecular architecture of diseases and to guide health care decision. It will be a valuable resource for bioinformaticians and members of several areas of the biomedical field who are interested in understanding more about how to process and apply great amounts of data to improve their research. Includes at each section resource pages containing a list of available curated raw and processed data that can be used by researchers in the field Provides demonstrative and relevant examples that serve as a general tutorial Presents a list of algorithm names and computational tools available for basic and clinical researchers
Principles of Biomedical Informatics
Title | Principles of Biomedical Informatics PDF eBook |
Author | Ira J. Kalet |
Publisher | Academic Press |
Pages | 709 |
Release | 2013-09-26 |
Genre | Business & Economics |
ISBN | 0123914620 |
This second edition of a pioneering technical work in biomedical informatics provides a very readable treatment of the deep computational ideas at the foundation of the field. Principles of Biomedical Informatics, 2nd Edition is radically reorganized to make it especially useable as a textbook for courses that move beyond the standard introductory material. It includes exercises at the end of each chapter, ideas for student projects, and a number of new topics, such as:• tree structured data, interval trees, and time-oriented medical data and their use• On Line Application Processing (OLAP), an old database idea that is only recently coming of age and finding surprising importance in biomedical informatics• a discussion of nursing knowledge and an example of encoding nursing advice in a rule-based system• X-ray physics and algorithms for cross-sectional medical image reconstruction, recognizing that this area was one of the most central to the origin of biomedical computing• an introduction to Markov processes, and• an outline of the elements of a hospital IT security program, focusing on fundamental ideas rather than specifics of system vulnerabilities or specific technologies. It is simultaneously a unified description of the core research concept areas of biomedical data and knowledge representation, biomedical information access, biomedical decision-making, and information and technology use in biomedical contexts, and a pre-eminent teaching reference for the growing number of healthcare and computing professionals embracing computation in health-related fields. As in the first edition, it includes many worked example programs in Common LISP, the most powerful and accessible modern language for advanced biomedical concept representation and manipulation. The text also includes humor, history, and anecdotal material to balance the mathematically and computationally intensive development in many of the topic areas. The emphasis, as in the first edition, is on ideas and methods that are likely to be of lasting value, not just the popular topics of the day. Ira Kalet is Professor Emeritus of Radiation Oncology, and of Biomedical Informatics and Medical Education, at the University of Washington. Until retiring in 2011 he was also an Adjunct Professor in Computer Science and Engineering, and Biological Structure. From 2005 to 2010 he served as IT Security Director for the University of Washington School of Medicine and its major teaching hospitals. He has been a member of the American Medical Informatics Association since 1990, and an elected Fellow of the American College of Medical Informatics since 2011. His research interests include simulation systems for design of radiation treatment for cancer, software development methodology, and artificial intelligence applications to medicine, particularly expert systems, ontologies and modeling. - Develops principles and methods for representing biomedical data, using information in context and in decision making, and accessing information to assist the medical community in using data to its full potential - Provides a series of principles for expressing biomedical data and ideas in a computable form to integrate biological, clinical, and public health applications - Includes a discussion of user interfaces, interactive graphics, and knowledge resources and reference material on programming languages to provide medical informatics programmers with the technical tools to develop systems