Lie Algebras of Bounded Operators

Lie Algebras of Bounded Operators
Title Lie Algebras of Bounded Operators PDF eBook
Author Daniel Beltita
Publisher Birkhäuser
Pages 226
Release 2012-12-06
Genre Mathematics
ISBN 3034883323

Download Lie Algebras of Bounded Operators Book in PDF, Epub and Kindle

In several proofs from the theory of finite-dimensional Lie algebras, an essential contribution comes from the Jordan canonical structure of linear maps acting on finite-dimensional vector spaces. On the other hand, there exist classical results concerning Lie algebras which advise us to use infinite-dimensional vector spaces as well. For example, the classical Lie Theorem asserts that all finite-dimensional irreducible representations of solvable Lie algebras are one-dimensional. Hence, from this point of view, the solvable Lie algebras cannot be distinguished from one another, that is, they cannot be classified. Even this example alone urges the infinite-dimensional vector spaces to appear on the stage. But the structure of linear maps on such a space is too little understood; for these linear maps one cannot speak about something like the Jordan canonical structure of matrices. Fortunately there exists a large class of linear maps on vector spaces of arbi trary dimension, having some common features with the matrices. We mean the bounded linear operators on a complex Banach space. Certain types of bounded operators (such as the Dunford spectral, Foia§ decomposable, scalar generalized or Colojoara spectral generalized operators) actually even enjoy a kind of Jordan decomposition theorem. One of the aims of the present book is to expound the most important results obtained until now by using bounded operators in the study of Lie algebras.

Unbounded Operator Algebras and Representation Theory

Unbounded Operator Algebras and Representation Theory
Title Unbounded Operator Algebras and Representation Theory PDF eBook
Author K. Schmüdgen
Publisher Birkhäuser
Pages 381
Release 2013-11-11
Genre Mathematics
ISBN 3034874693

Download Unbounded Operator Algebras and Representation Theory Book in PDF, Epub and Kindle

*-algebras of unbounded operators in Hilbert space, or more generally algebraic systems of unbounded operators, occur in a natural way in unitary representation theory of Lie groups and in the Wightman formulation of quantum field theory. In representation theory they appear as the images of the associated representations of the Lie algebras or of the enveloping algebras on the Garding domain and in quantum field theory they occur as the vector space of field operators or the *-algebra generated by them. Some of the basic tools for the general theory were first introduced and used in these fields. For instance, the notion of the weak (bounded) commutant which plays a fundamental role in thegeneraltheory had already appeared in quantum field theory early in the six ties. Nevertheless, a systematic study of unbounded operator algebras began only at the beginning of the seventies. It was initiated by (in alphabetic order) BORCHERS, LASSNER, POWERS, UHLMANN and VASILIEV. J1'rom the very beginning, and still today, represen tation theory of Lie groups and Lie algebras and quantum field theory have been primary sources of motivation and also of examples. However, the general theory of unbounded operator algebras has also had points of contact with several other disciplines. In particu lar, the theory of locally convex spaces, the theory of von Neumann algebras, distri bution theory, single operator theory, the momcnt problem and its non-commutative generalizations and noncommutative probability theory, all have interacted with our subject.

Lie Algebras of Bounded Operators

Lie Algebras of Bounded Operators
Title Lie Algebras of Bounded Operators PDF eBook
Author Daniel Beltita
Publisher Springer Science & Business Media
Pages 240
Release 2001-04-01
Genre Mathematics
ISBN 9783764364045

Download Lie Algebras of Bounded Operators Book in PDF, Epub and Kindle

In several proofs from the theory of finite-dimensional Lie algebras, an essential contribution comes from the Jordan canonical structure of linear maps acting on finite-dimensional vector spaces. On the other hand, there exist classical results concerning Lie algebras which advise us to use infinite-dimensional vector spaces as well. For example, the classical Lie Theorem asserts that all finite-dimensional irreducible representations of solvable Lie algebras are one-dimensional. Hence, from this point of view, the solvable Lie algebras cannot be distinguished from one another, that is, they cannot be classified. Even this example alone urges the infinite-dimensional vector spaces to appear on the stage. But the structure of linear maps on such a space is too little understood; for these linear maps one cannot speak about something like the Jordan canonical structure of matrices. Fortunately there exists a large class of linear maps on vector spaces of arbi trary dimension, having some common features with the matrices. We mean the bounded linear operators on a complex Banach space. Certain types of bounded operators (such as the Dunford spectral, Foia§ decomposable, scalar generalized or Colojoara spectral generalized operators) actually even enjoy a kind of Jordan decomposition theorem. One of the aims of the present book is to expound the most important results obtained until now by using bounded operators in the study of Lie algebras.

Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space

Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space
Title Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space PDF eBook
Author P. de la Harpe
Publisher Springer
Pages 164
Release 2006-11-14
Genre Mathematics
ISBN 3540379703

Download Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space Book in PDF, Epub and Kindle

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras
Title An Introduction to Lie Groups and Lie Algebras PDF eBook
Author Alexander A. Kirillov
Publisher Cambridge University Press
Pages 237
Release 2008-07-31
Genre Mathematics
ISBN 0521889693

Download An Introduction to Lie Groups and Lie Algebras Book in PDF, Epub and Kindle

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Completely Bounded Maps and Operator Algebras

Completely Bounded Maps and Operator Algebras
Title Completely Bounded Maps and Operator Algebras PDF eBook
Author Vern Paulsen
Publisher Cambridge University Press
Pages 316
Release 2002
Genre Mathematics
ISBN 9780521816694

Download Completely Bounded Maps and Operator Algebras Book in PDF, Epub and Kindle

In this book, first published in 2003, the reader is provided with a tour of the principal results and ideas in the theories of completely positive maps, completely bounded maps, dilation theory, operator spaces and operator algebras, together with some of their main applications. The author assumes only that the reader has a basic background in functional analysis, and the presentation is self-contained and paced appropriately for graduate students new to the subject. Experts will also want this book for their library since the author illustrates the power of methods he has developed with new and simpler proofs of some of the major results in the area, many of which have not appeared earlier in the literature. An indispensable introduction to the theory of operator spaces for all who want to know more.

Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane

Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane
Title Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane PDF eBook
Author Audrey Terras
Publisher Springer Science & Business Media
Pages 430
Release 2013-09-12
Genre Mathematics
ISBN 146147972X

Download Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane Book in PDF, Epub and Kindle

This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.