Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics

Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics
Title Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics PDF eBook
Author Yum-Tong Siu
Publisher
Pages 171
Release 1987
Genre Hermetian manifolds
ISBN

Download Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics Book in PDF, Epub and Kindle

Canonical Metrics in Kähler Geometry

Canonical Metrics in Kähler Geometry
Title Canonical Metrics in Kähler Geometry PDF eBook
Author Gang Tian
Publisher Birkhäuser
Pages 107
Release 2012-12-06
Genre Mathematics
ISBN 3034883897

Download Canonical Metrics in Kähler Geometry Book in PDF, Epub and Kindle

There has been fundamental progress in complex differential geometry in the last two decades. For one, The uniformization theory of canonical Kähler metrics has been established in higher dimensions, and many applications have been found, including the use of Calabi-Yau spaces in superstring theory. This monograph gives an introduction to the theory of canonical Kähler metrics on complex manifolds. It also presents some advanced topics not easily found elsewhere.

Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics

Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics
Title Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics PDF eBook
Author Y.-T. Siu
Publisher Birkhäuser
Pages 172
Release 2012-12-06
Genre Mathematics
ISBN 3034874863

Download Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics Book in PDF, Epub and Kindle

These notes are based on the lectures I delivered at the German Mathematical Society Seminar in Schloss Michkeln in DUsseldorf in June. 1986 on Hermitian-Einstein metrics for stable bundles and Kahler-Einstein metrics. The purpose of these notes is to present to the reader the state-of-the-art results in the simplest and the most comprehensible form using (at least from my own subjective viewpoint) the most natural approach. The presentation in these notes is reasonably self-contained and prerequisi tes are kept to a minimum. Most steps in the estimates are reduced as much as possible to the most basic procedures such as integration by parts and the maximum principle. When less basic procedures are used such as the Sobolev and Calderon-Zygmund inequalities and the interior Schauder estimates. references are given for the reader to look them up. A considerable amount of heuristic and intuitive discussions are included to explain why certain steps are used or certain notions introduced. The inclusion of such discussions makes the style of the presentation at some places more conversational than what is usually expected of rigorous mathemtical prese"ntations. For the problems of Hermi tian-Einstein metrics for stable bundles and Kahler-Einstein metrics one can use either the continuity method or the heat equation method. These two methods are so very intimately related that in many cases the relationship betwen them borders on equivalence. What counts most is the a. priori estimates. The kind of scaffolding one hangs the a.

An Introduction to Extremal Kahler Metrics

An Introduction to Extremal Kahler Metrics
Title An Introduction to Extremal Kahler Metrics PDF eBook
Author Gábor Székelyhidi
Publisher American Mathematical Soc.
Pages 210
Release 2014-06-19
Genre Mathematics
ISBN 1470410478

Download An Introduction to Extremal Kahler Metrics Book in PDF, Epub and Kindle

A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.

An Introduction to the Kähler-Ricci Flow

An Introduction to the Kähler-Ricci Flow
Title An Introduction to the Kähler-Ricci Flow PDF eBook
Author Sebastien Boucksom
Publisher Springer
Pages 342
Release 2013-10-02
Genre Mathematics
ISBN 3319008196

Download An Introduction to the Kähler-Ricci Flow Book in PDF, Epub and Kindle

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.

Kähler-Einstein Metrics and Integral Invariants

Kähler-Einstein Metrics and Integral Invariants
Title Kähler-Einstein Metrics and Integral Invariants PDF eBook
Author Akito Futaki
Publisher Springer
Pages 145
Release 2006-11-15
Genre Mathematics
ISBN 354039172X

Download Kähler-Einstein Metrics and Integral Invariants Book in PDF, Epub and Kindle

These notes present very recent results on compact Kähler-Einstein manifolds of positive scalar curvature. A central role is played here by a Lie algebra character of the complex Lie algebra consisting of all holomorphic vector fields, which can be intrinsically defined on any compact complex manifold and becomes an obstruction to the existence of a Kähler-Einstein metric. Recent results concerning this character are collected here, dealing with its origin, generalizations, sufficiency for the existence of a Kähler-Einstein metric and lifting to a group character. Other related topics such as extremal Kähler metrics studied by Calabi and others and the existence results of Tian and Yau are also reviewed. As the rudiments of Kählerian geometry and Chern-Simons theory are presented in full detail, these notes are accessible to graduate students as well as to specialists of the subject.

Lectures on Kähler Manifolds

Lectures on Kähler Manifolds
Title Lectures on Kähler Manifolds PDF eBook
Author Werner Ballmann
Publisher European Mathematical Society
Pages 190
Release 2006
Genre Mathematics
ISBN 9783037190258

Download Lectures on Kähler Manifolds Book in PDF, Epub and Kindle

These notes are based on lectures the author gave at the University of Bonn and the Erwin Schrodinger Institute in Vienna. The aim is to give a thorough introduction to the theory of Kahler manifolds with special emphasis on the differential geometric side of Kahler geometry. The exposition starts with a short discussion of complex manifolds and holomorphic vector bundles and a detailed account of the basic differential geometric properties of Kahler manifolds. The more advanced topics are the cohomology of Kahler manifolds, Calabi conjecture, Gromov's Kahler hyperbolic spaces, and the Kodaira embedding theorem. Some familiarity with global analysis and partial differential equations is assumed, in particular in the part on the Calabi conjecture. There are appendices on Chern-Weil theory, symmetric spaces, and $L^2$-cohomology.