LMSST: 24 Lectures on Elliptic Curves
Title | LMSST: 24 Lectures on Elliptic Curves PDF eBook |
Author | John William Scott Cassels |
Publisher | Cambridge University Press |
Pages | 148 |
Release | 1991-11-21 |
Genre | Mathematics |
ISBN | 9780521425308 |
A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.
LMSST
Title | LMSST PDF eBook |
Author | J. W. S. Cassels |
Publisher | |
Pages | 146 |
Release | 1991 |
Genre | Curves, Elliptic |
ISBN | 9781107094505 |
A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.
Rational Points on Elliptic Curves
Title | Rational Points on Elliptic Curves PDF eBook |
Author | Joseph H. Silverman |
Publisher | Springer Science & Business Media |
Pages | 292 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 1475742525 |
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Arithmetic Theory of Elliptic Curves
Title | Arithmetic Theory of Elliptic Curves PDF eBook |
Author | J. Coates |
Publisher | Springer Science & Business Media |
Pages | 276 |
Release | 1999-10-19 |
Genre | Mathematics |
ISBN | 9783540665465 |
This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.
Elliptic Curves (Second Edition)
Title | Elliptic Curves (Second Edition) PDF eBook |
Author | James S Milne |
Publisher | World Scientific |
Pages | 319 |
Release | 2020-08-20 |
Genre | Mathematics |
ISBN | 9811221855 |
This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.
Higher Regulators, Algebraic $K$-Theory, and Zeta Functions of Elliptic Curves
Title | Higher Regulators, Algebraic $K$-Theory, and Zeta Functions of Elliptic Curves PDF eBook |
Author | Spencer J. Bloch |
Publisher | American Mathematical Soc. |
Pages | 114 |
Release | 2011 |
Genre | Mathematics |
ISBN | 0821829734 |
This is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more).
Abelian l-Adic Representations and Elliptic Curves
Title | Abelian l-Adic Representations and Elliptic Curves PDF eBook |
Author | Jean-Pierre Serre |
Publisher | CRC Press |
Pages | 203 |
Release | 1997-11-15 |
Genre | Mathematics |
ISBN | 1439863865 |
This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one