Lectures On Advanced Mathematical Methods For Physicists
Title | Lectures On Advanced Mathematical Methods For Physicists PDF eBook |
Author | N Mukunda |
Publisher | World Scientific |
Pages | 289 |
Release | 2010-04-27 |
Genre | Science |
ISBN | 9814465275 |
This book presents a survey of Topology and Differential Geometry and also, Lie Groups and Algebras, and their Representations. The first topic is indispensable to students of gravitation and related areas of modern physics (including string theory), while the second has applications in gauge theory and particle physics, integrable systems and nuclear physics.Part I provides a simple introduction to basic topology, followed by a survey of homotopy. Calculus of differentiable manifolds is then developed, and a Riemannian metric is introduced along with the key concepts of connections and curvature. The final chapters lay out the basic notions of simplicial homology and de Rham cohomology as well as fibre bundles, particularly tangent and cotangent bundles.Part II starts with a review of group theory, followed by the basics of representation theory. A thorough description of Lie groups and algebras is presented with their structure constants and linear representations. Root systems and their classifications are detailed, and this section of the book concludes with the description of representations of simple Lie algebras, emphasizing spinor representations of orthogonal and pseudo-orthogonal groups.The style of presentation is succinct and precise. Involved mathematical proofs that are not of primary importance to physics student are omitted. The book aims to provide the reader access to a wide variety of sources in the current literature, in addition to being a textbook of advanced mathematical methods for physicists.
Lectures on Advanced Mathematical Methods for Physicists
Title | Lectures on Advanced Mathematical Methods for Physicists PDF eBook |
Author | Sunil Mukhi |
Publisher | World Scientific |
Pages | 289 |
Release | 2010 |
Genre | Mathematics |
ISBN | 981429974X |
This book presents a survey of Topology and Differential Geometry and also, Lie Groups and Algebras, and their Representations. The first topic is indispensable to students of gravitation and related areas of modern physics, (including string theory) while the second has applications in gauge theory and particle physics, integrable systems and nuclear physics. Part I provides a simple introduction to basic topology, followed by a survey of homotopy. Calculus of differentiable manifolds is then developed, and a Riemannian metric is introduced along with the key concepts of connections and curvature. The final chapters lay out the basic notions of simplicial homology and De Rham cohomology as well as fibre bundles, particularly tangent and cotangent bundles. Part II starts with a review of group theory, followed by the basics of representation theory. A thorough description of Lie groups and algebras is presented with their structure constants and linear representations. Root systems and their classifications are detailed, and this section of the book concludes with the description of representations of simple Lie algebras, emphasizing spinor representations of orthogonal and pseudo-orthogonal groups. The style of presentation is succinct and precise. Involved mathematical proofs that are not of primary importance to physics student are omitted. The book aims to provide the reader access to a wide variety of sources in the current literature, in addition to being a textbook of advanced mathematical methods for physicists.
Advanced Mathematical Methods for Scientists and Engineers I
Title | Advanced Mathematical Methods for Scientists and Engineers I PDF eBook |
Author | Carl M. Bender |
Publisher | Springer Science & Business Media |
Pages | 605 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475730691 |
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Basic Training in Mathematics
Title | Basic Training in Mathematics PDF eBook |
Author | R. Shankar |
Publisher | Springer |
Pages | 371 |
Release | 2013-12-20 |
Genre | Science |
ISBN | 1489967982 |
Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.
Mathematical Methods
Title | Mathematical Methods PDF eBook |
Author | Sadri Hassani |
Publisher | Springer Science & Business Media |
Pages | 673 |
Release | 2013-11-11 |
Genre | Mathematics |
ISBN | 038721562X |
Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.
Mathematical Methods for Physics and Engineering
Title | Mathematical Methods for Physics and Engineering PDF eBook |
Author | Mattias Blennow |
Publisher | CRC Press |
Pages | 749 |
Release | 2018-01-03 |
Genre | Science |
ISBN | 1351676075 |
Suitable for advanced undergraduate and graduate students, this new textbook contains an introduction to the mathematical concepts used in physics and engineering. The entire book is unique in that it draws upon applications from physics, rather than mathematical examples, to ensure students are fully equipped with the tools they need. This approach prepares the reader for advanced topics, such as quantum mechanics and general relativity, while offering examples, problems, and insights into classical physics. The book is also distinctive in the coverage it devotes to modelling, and to oft-neglected topics such as Green's functions.
Advanced Mathematical Methods in Science and Engineering
Title | Advanced Mathematical Methods in Science and Engineering PDF eBook |
Author | S.I. Hayek |
Publisher | CRC Press |
Pages | 862 |
Release | 2010-06-22 |
Genre | Mathematics |
ISBN | 1420081985 |
Classroom-tested, Advanced Mathematical Methods in Science and Engineering, Second Edition presents methods of applied mathematics that are particularly suited to address physical problems in science and engineering. Numerous examples illustrate the various methods of solution and answers to the end-of-chapter problems are included at the back of the book. After introducing integration and solution methods of ordinary differential equations (ODEs), the book presents Bessel and Legendre functions as well as the derivation and methods of solution of linear boundary value problems for physical systems in one spatial dimension governed by ODEs. It also covers complex variables, calculus, and integrals; linear partial differential equations (PDEs) in classical physics and engineering; the derivation of integral transforms; Green’s functions for ODEs and PDEs; asymptotic methods for evaluating integrals; and the asymptotic solution of ODEs. New to this edition, the final chapter offers an extensive treatment of numerical methods for solving non-linear equations, finite difference differentiation and integration, initial value and boundary value ODEs, and PDEs in mathematical physics. Chapters that cover boundary value problems and PDEs contain derivations of the governing differential equations in many fields of applied physics and engineering, such as wave mechanics, acoustics, heat flow in solids, diffusion of liquids and gases, and fluid flow. An update of a bestseller, this second edition continues to give students the strong foundation needed to apply mathematical techniques to the physical phenomena encountered in scientific and engineering applications.