Lebesgue and Sobolev Spaces with Variable Exponents
Title | Lebesgue and Sobolev Spaces with Variable Exponents PDF eBook |
Author | Lars Diening |
Publisher | Springer |
Pages | 516 |
Release | 2011-03-29 |
Genre | Mathematics |
ISBN | 3642183638 |
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Lebesgue and Sobolev Spaces with Variable Exponents
Title | Lebesgue and Sobolev Spaces with Variable Exponents PDF eBook |
Author | Lars Diening |
Publisher | Springer Science & Business Media |
Pages | 516 |
Release | 2011-03-31 |
Genre | Mathematics |
ISBN | 364218362X |
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Variable Lebesgue Spaces
Title | Variable Lebesgue Spaces PDF eBook |
Author | David V. Cruz-Uribe |
Publisher | Springer Science & Business Media |
Pages | 316 |
Release | 2013-02-12 |
Genre | Mathematics |
ISBN | 3034805489 |
This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.
Morrey Spaces
Title | Morrey Spaces PDF eBook |
Author | Yoshihiro Sawano |
Publisher | CRC Press |
Pages | 427 |
Release | 2020-09-16 |
Genre | Mathematics |
ISBN | 1000064077 |
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Partial Differential Equations with Variable Exponents
Title | Partial Differential Equations with Variable Exponents PDF eBook |
Author | Vicentiu D. Radulescu |
Publisher | CRC Press |
Pages | 321 |
Release | 2015-06-24 |
Genre | Mathematics |
ISBN | 1498703445 |
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational
Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents
Title | Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents PDF eBook |
Author | Alex Kaltenbach |
Publisher | Springer Nature |
Pages | 364 |
Release | 2023-09-12 |
Genre | Mathematics |
ISBN | 3031296702 |
This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner–Lebesgue spaces is not applicable. As a substitute for Bochner–Lebesgue spaces, variable Bochner–Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier–Stokes equations under general assumptions. Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory and non-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.
Orlicz Spaces and Generalized Orlicz Spaces
Title | Orlicz Spaces and Generalized Orlicz Spaces PDF eBook |
Author | Petteri Harjulehto |
Publisher | Springer |
Pages | 176 |
Release | 2019-05-07 |
Genre | Mathematics |
ISBN | 303015100X |
This book presents a systematic treatment of generalized Orlicz spaces (also known as Musielak–Orlicz spaces) with minimal assumptions on the generating Φ-function. It introduces and develops a technique centered on the use of equivalent Φ-functions. Results from classical functional analysis are presented in detail and new material is included on harmonic analysis. Extrapolation is used to prove, for example, the boundedness of Calderón–Zygmund operators. Finally, central results are provided for Sobolev spaces, including Poincaré and Sobolev–Poincaré inequalities in norm and modular forms. Primarily aimed at researchers and PhD students interested in Orlicz spaces or generalized Orlicz spaces, this book can be used as a basis for advanced graduate courses in analysis.