Lattice Path Combinatorics and Applications

Lattice Path Combinatorics and Applications
Title Lattice Path Combinatorics and Applications PDF eBook
Author George E. Andrews
Publisher Springer
Pages 443
Release 2019-03-02
Genre Mathematics
ISBN 3030111024

Download Lattice Path Combinatorics and Applications Book in PDF, Epub and Kindle

The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.

Lattice Path Combinatorics, with Statistical Applications

Lattice Path Combinatorics, with Statistical Applications
Title Lattice Path Combinatorics, with Statistical Applications PDF eBook
Author Tadepalli Venkata Narayana
Publisher Toronto ; Buffalo : University of Toronto Press
Pages 128
Release 1979
Genre Mathematics
ISBN

Download Lattice Path Combinatorics, with Statistical Applications Book in PDF, Epub and Kindle

Lattice Path Counting and Applications

Lattice Path Counting and Applications
Title Lattice Path Counting and Applications PDF eBook
Author Gopal Mohanty
Publisher Academic Press
Pages 200
Release 2014-07-10
Genre Mathematics
ISBN 1483218805

Download Lattice Path Counting and Applications Book in PDF, Epub and Kindle

Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Lattice Path Counting and Applications focuses on the principles, methodologies, and approaches involved in lattice path counting and applications, including vector representation, random walks, and rank order statistics. The book first underscores the simple and general boundaries of path counting. Topics include types of diagonal steps and a correspondence, paths within general boundaries, higher dimensional paths, vector representation, compositions, and domination, recurrence and generating function method, and reflection principle. The text then examines invariance and fluctuation and random walk and rank order statistics. Discussions focus on random walks, rank order statistics, Chung-Feller theorems, and Sparre Andersen's equivalence. The manuscript takes a look at convolution identities and inverse relations and discrete distributions, queues, trees, and search codes, as well as discrete distributions and a correlated random walk, trees and search codes, convolution identities, and orthogonal relations and inversion formulas. The text is a valuable reference for mathematicians and researchers interested in in lattice path counting and applications.

Lattice Path Combinatorics and Special Counting Sequences

Lattice Path Combinatorics and Special Counting Sequences
Title Lattice Path Combinatorics and Special Counting Sequences PDF eBook
Author Chunwei Song
Publisher CRC Press
Pages 120
Release 2024-09-17
Genre Mathematics
ISBN 1040123414

Download Lattice Path Combinatorics and Special Counting Sequences Book in PDF, Epub and Kindle

This book endeavors to deepen our understanding of lattice path combinatorics, explore key types of special sequences, elucidate their interconnections, and concurrently champion the author's interpretation of the “combinatorial spirit”. The author intends to give an up-to-date introduction to the theory of lattice path combinatorics, its relation to those special counting sequences important in modern combinatorial studies, such as the Catalan, Schröder, Motzkin, Delannoy numbers, and their generalized versions. Brief discussions of applications of lattice path combinatorics to symmetric functions and connections to the theory of tableaux are also included. Meanwhile, the author also presents an interpretation of the "combinatorial spirit" (i.e., "counting without counting", bijective proofs, and understanding combinatorics from combinatorial structures internally, and more), hoping to shape the development of contemporary combinatorics. Lattice Path Combinatorics and Special Counting Sequences: From an Enumerative Perspective will appeal to graduate students and advanced undergraduates studying combinatorics, discrete mathematics, or computer science.

Advances in Combinatorial Methods and Applications to Probability and Statistics

Advances in Combinatorial Methods and Applications to Probability and Statistics
Title Advances in Combinatorial Methods and Applications to Probability and Statistics PDF eBook
Author N. Balakrishnan
Publisher Springer Science & Business Media
Pages 576
Release 2012-12-06
Genre Mathematics
ISBN 1461241405

Download Advances in Combinatorial Methods and Applications to Probability and Statistics Book in PDF, Epub and Kindle

Sri Gopal Mohanty has made pioneering contributions to lattice path counting and its applications to probability and statistics. This is clearly evident from his lifetime publications list and the numerous citations his publications have received over the past three decades. My association with him began in 1982 when I came to McMaster Univer sity. Since then, I have been associated with him on many different issues at professional as well as cultural levels; I have benefited greatly from him on both these grounds. I have enjoyed very much being his colleague in the statistics group here at McMaster University and also as his friend. While I admire him for his honesty, sincerity and dedication, I appreciate very much his kindness, modesty and broad-mindedness. Aside from our common interest in mathematics and statistics, we both have great love for Indian classical music and dance. We have spent numerous many different subjects associated with the Indian music and hours discussing dance. I still remember fondly the long drive (to Amherst, Massachusetts) I had a few years ago with him and his wife, Shantimayee, and all the hearty discussions we had during that journey. Combinatorics and applications of combinatorial methods in probability and statistics has become a very active and fertile area of research in the recent past.

Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23

Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23
Title Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 PDF eBook
Author T. V. Narayana
Publisher Heritage
Pages 120
Release 1979-12
Genre Mathematics
ISBN 9781487587284

Download Lattice Path Combinatorics with Statistical Applications; Mathematical Expositions 23 Book in PDF, Epub and Kindle

Lattice path combinatorics has developed greatly as a branch of probability studies recently, and the need for new books on the subject is obvious. It treats several recent results and it offers a powerful new tool for studying many problems in mathematical statistics.

Counting Lattice Paths Using Fourier Methods

Counting Lattice Paths Using Fourier Methods
Title Counting Lattice Paths Using Fourier Methods PDF eBook
Author Shaun Ault
Publisher Springer Nature
Pages 142
Release 2019-08-30
Genre Mathematics
ISBN 3030266966

Download Counting Lattice Paths Using Fourier Methods Book in PDF, Epub and Kindle

This monograph introduces a novel and effective approach to counting lattice paths by using the discrete Fourier transform (DFT) as a type of periodic generating function. Utilizing a previously unexplored connection between combinatorics and Fourier analysis, this method will allow readers to move to higher-dimensional lattice path problems with ease. The technique is carefully developed in the first three chapters using the algebraic properties of the DFT, moving from one-dimensional problems to higher dimensions. In the following chapter, the discussion turns to geometric properties of the DFT in order to study the corridor state space. Each chapter poses open-ended questions and exercises to prompt further practice and future research. Two appendices are also provided, which cover complex variables and non-rectangular lattices, thus ensuring the text will be self-contained and serve as a valued reference. Counting Lattice Paths Using Fourier Methods is ideal for upper-undergraduates and graduate students studying combinatorics or other areas of mathematics, as well as computer science or physics. Instructors will also find this a valuable resource for use in their seminars. Readers should have a firm understanding of calculus, including integration, sequences, and series, as well as a familiarity with proofs and elementary linear algebra.