Knots and Physics

Knots and Physics
Title Knots and Physics PDF eBook
Author Louis H. Kauffman
Publisher World Scientific
Pages 865
Release 2013
Genre Mathematics
ISBN 9814383007

Download Knots and Physics Book in PDF, Epub and Kindle

An introduction to knot and link invariants as generalised amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics.

Knots And Physics (Second Edition)

Knots And Physics (Second Edition)
Title Knots And Physics (Second Edition) PDF eBook
Author Louis H Kauffman
Publisher World Scientific
Pages 739
Release 1994-01-15
Genre Mathematics
ISBN 9814502375

Download Knots And Physics (Second Edition) Book in PDF, Epub and Kindle

In this second edition, the following recent papers have been added: “Gauss Codes, Quantum Groups and Ribbon Hopf Algebras”, “Spin Networks, Topology and Discrete Physics”, “Link Polynomials and a Graphical Calculus” and “Knots Tangles and Electrical Networks”. An appendix with a discussion on invariants of embedded graphs and Vassiliev invariants has also been included.This book is an introduction to knot and link invariants as generalized amplitudes (vacuum-vacuum amplitudes) for a quasi-physical process. The demands of knot theory, coupled with a quantum statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related to and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics and knots in dynamical systems.

The Knot Book

The Knot Book
Title The Knot Book PDF eBook
Author Colin Conrad Adams
Publisher American Mathematical Soc.
Pages 330
Release 2004
Genre Mathematics
ISBN 0821836781

Download The Knot Book Book in PDF, Epub and Kindle

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.

Knots and Links

Knots and Links
Title Knots and Links PDF eBook
Author Dale Rolfsen
Publisher American Mathematical Soc.
Pages 458
Release 2003
Genre Mathematics
ISBN 0821834363

Download Knots and Links Book in PDF, Epub and Kindle

Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book.""

On Knots

On Knots
Title On Knots PDF eBook
Author Louis H. Kauffman
Publisher Princeton University Press
Pages 500
Release 1987
Genre Mathematics
ISBN 9780691084350

Download On Knots Book in PDF, Epub and Kindle

On Knots is a journey through the theory of knots, starting from the simplest combinatorial ideas--ideas arising from the representation of weaving patterns. From this beginning, topological invariants are constructed directly: first linking numbers, then the Conway polynomial and skein theory. This paves the way for later discussion of the recently discovered Jones and generalized polynomials. The central chapter, Chapter Six, is a miscellany of topics and recreations. Here the reader will find the quaternions and the belt trick, a devilish rope trick, Alhambra mosaics, Fibonacci trees, the topology of DNA, and the author's geometric interpretation of the generalized Jones Polynomial. Then come branched covering spaces, the Alexander polynomial, signature theorems, the work of Casson and Gordon on slice knots, and a chapter on knots and algebraic singularities.The book concludes with an appendix about generalized polynomials.

Knot Theory and Its Applications

Knot Theory and Its Applications
Title Knot Theory and Its Applications PDF eBook
Author Kunio Murasugi
Publisher Springer Science & Business Media
Pages 348
Release 2009-12-29
Genre Mathematics
ISBN 0817647198

Download Knot Theory and Its Applications Book in PDF, Epub and Kindle

This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.

Polynomial One-cocycles For Knots And Closed Braids

Polynomial One-cocycles For Knots And Closed Braids
Title Polynomial One-cocycles For Knots And Closed Braids PDF eBook
Author Thomas Fiedler
Publisher World Scientific
Pages 259
Release 2019-08-27
Genre Mathematics
ISBN 9811210314

Download Polynomial One-cocycles For Knots And Closed Braids Book in PDF, Epub and Kindle

Traditionally, knot theory deals with diagrams of knots and the search of invariants of diagrams which are invariant under the well known Reidemeister moves. This book goes one step beyond: it gives a method to construct invariants for one parameter famillies of diagrams and which are invariant under 'higher' Reidemeister moves. Luckily, knots in 3-space, often called classical knots, can be transformed into knots in the solid torus without loss of information. It turns out that knots in the solid torus have a particular rich topological moduli space. It contains many 'canonical' loops to which the invariants for one parameter families can be applied, in order to get a new sort of invariants for classical knots.