Kan Extensions in Enriched Category Theory
Title | Kan Extensions in Enriched Category Theory PDF eBook |
Author | Eduardo J. Dubuc |
Publisher | Springer |
Pages | 190 |
Release | 2006-11-15 |
Genre | Mathematics |
ISBN | 3540363076 |
The original purpose of this paper was to provide suitable enriched completions of small enriched categories.
Basic Concepts of Enriched Category Theory
Title | Basic Concepts of Enriched Category Theory PDF eBook |
Author | Gregory Maxwell Kelly |
Publisher | CUP Archive |
Pages | 260 |
Release | 1982-02-18 |
Genre | Mathematics |
ISBN | 9780521287029 |
Categorical Homotopy Theory
Title | Categorical Homotopy Theory PDF eBook |
Author | Emily Riehl |
Publisher | Cambridge University Press |
Pages | 371 |
Release | 2014-05-26 |
Genre | Mathematics |
ISBN | 1139952633 |
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
(Co)end Calculus
Title | (Co)end Calculus PDF eBook |
Author | Fosco Loregian |
Publisher | Cambridge University Press |
Pages | 331 |
Release | 2021-07-22 |
Genre | Mathematics |
ISBN | 1108746128 |
This easy-to-cite handbook gives the first systematic treatment of the (co)end calculus in category theory and its applications.
Basic Category Theory
Title | Basic Category Theory PDF eBook |
Author | Tom Leinster |
Publisher | Cambridge University Press |
Pages | 193 |
Release | 2014-07-24 |
Genre | Mathematics |
ISBN | 1107044243 |
A short introduction ideal for students learning category theory for the first time.
Category Theory in Context
Title | Category Theory in Context PDF eBook |
Author | Emily Riehl |
Publisher | Courier Dover Publications |
Pages | 273 |
Release | 2017-03-09 |
Genre | Mathematics |
ISBN | 0486820807 |
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
From Categories to Homotopy Theory
Title | From Categories to Homotopy Theory PDF eBook |
Author | Birgit Richter |
Publisher | Cambridge University Press |
Pages | 402 |
Release | 2020-04-16 |
Genre | Mathematics |
ISBN | 1108847625 |
Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.