K3 Surfaces
Title | K3 Surfaces PDF eBook |
Author | Shigeyuki Kondō |
Publisher | |
Pages | 250 |
Release | 2020 |
Genre | Geometry, Algebraic |
ISBN | 9783037197080 |
$K3$ surfaces are a key piece in the classification of complex analytic or algebraic surfaces. The term was coined by A. Weil in 1958 - a result of the initials Kummer, Kähler, Kodaira, and the mountain K2 found in Karakoram. The most famous example is the Kummer surface discovered in the 19th century.$K3$ surfaces can be considered as a 2-dimensional analogue of an elliptic curve, and the theory of periods - called the Torelli-type theorem for $K3$ surfaces - was established around 1970. Since then, several pieces of research on $K3$ surfaces have been undertaken and more recently $K3$ surfaces have even become of interest in theoretical physics.The main purpose of this book is an introduction to the Torelli-type theorem for complex analytic $K3$ surfaces, and its applications. The theory of lattices and their reflection groups is necessary to study $K3$ surfaces, and this book introduces these notions. The book contains, as well as lattices and reflection groups, the classification of complex analytic surfaces, the Torelli-type theorem, the subjectivity of the period map, Enriques surfaces, an application to the moduli space of plane quartics, finite automorphisms of $K3$ surfaces, Niemeier lattices and the Mathieu group, the automorphism group of Kummer surfaces and the Leech lattice.The author seeks to demonstrate the interplay between several sorts of mathematics and hopes the book will prove helpful to researchers in algebraic geometry and related areas, and to graduate students with a basic grounding in algebraic geometry.
Lectures on K3 Surfaces
Title | Lectures on K3 Surfaces PDF eBook |
Author | Daniel Huybrechts |
Publisher | Cambridge University Press |
Pages | 499 |
Release | 2016-09-26 |
Genre | Mathematics |
ISBN | 1316797252 |
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
K 3
Title | K 3 PDF eBook |
Author | Tracie O'Neil Horton |
Publisher | Outskirts Press |
Pages | 748 |
Release | 2018-12-21 |
Genre | Fiction |
ISBN | 1977202705 |
“Racial tension in the United States is at an all-time high. The government, infiltrated by the KKK, uses this tension to justify dividing the states into racial sections. A must-read for every American! PS, you’ll love the ending!” ~ Carl Phillip, Attorney
“The anxiety caused in the United States by racial tensions is something felt by every American. This book needs to read by every American of every race!” ~ Jacqueline Saunders, Barnes & Noble Reader
“A perfect story for our time! I love Mikela! She is a courageous pioneer in a new world.” ~Alexandria O’Neil, Amazon Reader
Lectures on K3 Surfaces
Title | Lectures on K3 Surfaces PDF eBook |
Author | Daniel Huybrechts |
Publisher | Cambridge University Press |
Pages | 499 |
Release | 2016-09-26 |
Genre | Mathematics |
ISBN | 1107153042 |
Simple enough for detailed study, rich enough to show interesting behavior, K3 surfaces illuminate core methods in algebraic geometry.
K3 Surfaces and Their Moduli
Title | K3 Surfaces and Their Moduli PDF eBook |
Author | Carel Faber |
Publisher | Birkhäuser |
Pages | 403 |
Release | 2016-04-22 |
Genre | Mathematics |
ISBN | 331929959X |
This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.
K3 Projective Models in Scrolls
Title | K3 Projective Models in Scrolls PDF eBook |
Author | Trygve Johnsen |
Publisher | Springer Science & Business Media |
Pages | 180 |
Release | 2004 |
Genre | Projective modules (Algebra) |
ISBN | 9783540215059 |
Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds
Title | Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds PDF eBook |
Author | Radu Laza |
Publisher | Springer Science & Business Media |
Pages | 613 |
Release | 2013-06-12 |
Genre | Mathematics |
ISBN | 146146403X |
In recent years, research in K3 surfaces and Calabi–Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics—in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi–Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi–Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.