Advanced Algebra

Advanced Algebra
Title Advanced Algebra PDF eBook
Author Anthony W. Knapp
Publisher Springer Science & Business Media
Pages 757
Release 2007-10-11
Genre Mathematics
ISBN 0817646132

Download Advanced Algebra Book in PDF, Epub and Kindle

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Advanced Algebra includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry. Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems. Together the two books give the reader a global view of algebra and its role in mathematics as a whole.

Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra
Title Introduction to Applied Linear Algebra PDF eBook
Author Stephen Boyd
Publisher Cambridge University Press
Pages 477
Release 2018-06-07
Genre Business & Economics
ISBN 1316518965

Download Introduction to Applied Linear Algebra Book in PDF, Epub and Kindle

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition)
Title Advanced Calculus (Revised Edition) PDF eBook
Author Lynn Harold Loomis
Publisher World Scientific Publishing Company
Pages 595
Release 2014-02-26
Genre Mathematics
ISBN 9814583952

Download Advanced Calculus (Revised Edition) Book in PDF, Epub and Kindle

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology
Title A Concise Course in Algebraic Topology PDF eBook
Author J. P. May
Publisher University of Chicago Press
Pages 262
Release 1999-09
Genre Mathematics
ISBN 9780226511832

Download A Concise Course in Algebraic Topology Book in PDF, Epub and Kindle

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

101 Problems in Algebra

101 Problems in Algebra
Title 101 Problems in Algebra PDF eBook
Author Titu Andreescu
Publisher
Pages 139
Release 2001-01-01
Genre Algebra
ISBN 9781876420123

Download 101 Problems in Algebra Book in PDF, Epub and Kindle

All the Mathematics You Missed

All the Mathematics You Missed
Title All the Mathematics You Missed PDF eBook
Author Thomas A. Garrity
Publisher 清华大学出版社有限公司
Pages 380
Release 2004
Genre Mathematics
ISBN 9787302090854

Download All the Mathematics You Missed Book in PDF, Epub and Kindle

Algebraic Combinatorics

Algebraic Combinatorics
Title Algebraic Combinatorics PDF eBook
Author Richard P. Stanley
Publisher Springer Science & Business Media
Pages 226
Release 2013-06-17
Genre Mathematics
ISBN 1461469988

Download Algebraic Combinatorics Book in PDF, Epub and Kindle

Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.