Introduction to Soft-Collinear Effective Theory
Title | Introduction to Soft-Collinear Effective Theory PDF eBook |
Author | Thomas Becher |
Publisher | Springer |
Pages | 214 |
Release | 2015-03-04 |
Genre | Science |
ISBN | 3319148486 |
Among resummation techniques for perturbative QCD in the context of collider and flavor physics, soft-collinear effective theory (SCET) has emerged as both a powerful and versatile tool, having been applied to a large variety of processes, from B-meson decays to jet production at the LHC. This book provides a concise, pedagogical introduction to this technique. It discusses the expansion of Feynman diagrams around the high-energy limit, followed by the explicit construction of the effective Lagrangian - first for a scalar theory, then for QCD. The underlying concepts are illustrated with the quark vector form factor at large momentum transfer, and the formalism is applied to compute soft-gluon resummation and to perform transverse-momentum resummation for the Drell-Yan process utilizing renormalization group evolution in SCET. Finally, the infrared structure of n-point gauge-theory amplitudes is analyzed by relating them to effective-theory operators. This text is suitable for graduate students and non-specialist researchers alike as it requires only basic knowledge of perturbative QCD.
Advances in Jet Substructure at the LHC
Title | Advances in Jet Substructure at the LHC PDF eBook |
Author | Roman Kogler |
Publisher | Springer Nature |
Pages | 287 |
Release | 2021-05-10 |
Genre | Science |
ISBN | 3030728587 |
This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.
Foundations of Perturbative QCD
Title | Foundations of Perturbative QCD PDF eBook |
Author | John Collins |
Publisher | Cambridge University Press |
Pages | 637 |
Release | 2011-04-28 |
Genre | Science |
ISBN | 1139500627 |
Giving an accurate account of the concepts, theorems and their justification, this book is a systematic treatment of perturbative QCD. It relates the concepts to experimental data, giving strong motivations for the methods. Ideal for graduate students starting their work in high-energy physics, it will also interest experienced researchers.
Looking Inside Jets
Title | Looking Inside Jets PDF eBook |
Author | Simone Marzani |
Publisher | Springer |
Pages | 210 |
Release | 2019-05-11 |
Genre | Science |
ISBN | 3030157091 |
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.
Jet Quenching in Relativistic Heavy Ion Collisions at the LHC
Title | Jet Quenching in Relativistic Heavy Ion Collisions at the LHC PDF eBook |
Author | Aaron Angerami |
Publisher | Springer Science & Business Media |
Pages | 180 |
Release | 2013-12-02 |
Genre | Science |
ISBN | 3319012193 |
This thesis presents the first measurements of jets in relativistic heavy ion collisions as reported by the ATLAS Collaboration. These include the first direct observation of jet quenching through the observation of a centrality-dependent dijet asymmetry. Also, a series of jet suppression measurements are presented, which provide quantitative constraints on theoretical models of jet quenching. These results follow a detailed introduction to heavy ion physics with emphasis on the phenomenon of jet quenching and a comprehensive description of the ATLAS detector and its capabilities with regard to performing these measurements.
Effective Field Theory in Particle Physics and Cosmology
Title | Effective Field Theory in Particle Physics and Cosmology PDF eBook |
Author | Sacha Davidson |
Publisher | |
Pages | 806 |
Release | 2020 |
Genre | Science |
ISBN | 0198855745 |
The topic of the CVIII session of Les Houches School, held in July 2017, was Effective Field Theory (EFT). The goal of this school was to offer a broad introduction to the foundations and modern applications of Effective Field Theory in many of its incarnations.
Quantum Field Theory and the Standard Model
Title | Quantum Field Theory and the Standard Model PDF eBook |
Author | Matthew D. Schwartz |
Publisher | Cambridge University Press |
Pages | 869 |
Release | 2014 |
Genre | Science |
ISBN | 1107034736 |
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.