Iterative Methods for Ill-Posed Problems
Title | Iterative Methods for Ill-Posed Problems PDF eBook |
Author | Anatoly B. Bakushinsky |
Publisher | Walter de Gruyter |
Pages | 153 |
Release | 2010-12-23 |
Genre | Mathematics |
ISBN | 3110250659 |
Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions. Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.
Iterative Regularization Methods for Nonlinear Ill-Posed Problems
Title | Iterative Regularization Methods for Nonlinear Ill-Posed Problems PDF eBook |
Author | Barbara Kaltenbacher |
Publisher | Walter de Gruyter |
Pages | 205 |
Release | 2008-09-25 |
Genre | Mathematics |
ISBN | 311020827X |
Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.
Regularization Algorithms for Ill-Posed Problems
Title | Regularization Algorithms for Ill-Posed Problems PDF eBook |
Author | Anatoly B. Bakushinsky |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 447 |
Release | 2018-02-05 |
Genre | Mathematics |
ISBN | 3110556383 |
This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems
Ill-Posed Problems: Theory and Applications
Title | Ill-Posed Problems: Theory and Applications PDF eBook |
Author | A. Bakushinsky |
Publisher | Springer Science & Business Media |
Pages | 268 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 9401110263 |
Recent years have been characterized by the increasing amountofpublications in the field ofso-called ill-posed problems. This is easilyunderstandable because we observe the rapid progress of a relatively young branch ofmathematics, ofwhich the first results date back to about 30 years ago. By now, impressive results have been achieved both in the theory ofsolving ill-posed problems and in the applicationsofalgorithms using modem computers. To mention just one field, one can name the computer tomography which could not possibly have been developed without modem tools for solving ill-posed problems. When writing this book, the authors tried to define the place and role of ill posed problems in modem mathematics. In a few words, we define the theory of ill-posed problems as the theory of approximating functions with approximately given arguments in functional spaces. The difference between well-posed and ill posed problems is concerned with the fact that the latter are associated with discontinuous functions. This approach is followed by the authors throughout the whole book. We hope that the theoretical results will be of interest to researchers working in approximation theory and functional analysis. As for particular algorithms for solving ill-posed problems, the authors paid general attention to the principles ofconstructing such algorithms as the methods for approximating discontinuous functions with approximately specified arguments. In this way it proved possible to define the limits of applicability of regularization techniques.
Iterative Methods for Approximate Solution of Inverse Problems
Title | Iterative Methods for Approximate Solution of Inverse Problems PDF eBook |
Author | A.B. Bakushinsky |
Publisher | Springer Science & Business Media |
Pages | 298 |
Release | 2007-09-28 |
Genre | Mathematics |
ISBN | 140203122X |
This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn’t require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems.
Iterative Methods for Ill-posed Problems
Title | Iterative Methods for Ill-posed Problems PDF eBook |
Author | Anatoly B. Bakushinsky |
Publisher | Walter de Gruyter |
Pages | 153 |
Release | 2011 |
Genre | Mathematics |
ISBN | 3110250640 |
Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions. Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.
Handbook of Mathematical Methods in Imaging
Title | Handbook of Mathematical Methods in Imaging PDF eBook |
Author | Otmar Scherzer |
Publisher | Springer Science & Business Media |
Pages | 1626 |
Release | 2010-11-23 |
Genre | Mathematics |
ISBN | 0387929193 |
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.