Introduction to the Geometry of Foliations, Part B
Title | Introduction to the Geometry of Foliations, Part B PDF eBook |
Author | Gilbert Hector |
Publisher | Springer Science & Business Media |
Pages | 309 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 3322901610 |
"The book ...is a storehouse of useful information for the mathematicians interested in foliation theory." (John Cantwell, Mathematical Reviews 1992)
Introduction to the Geometry of Foliations, Part A
Title | Introduction to the Geometry of Foliations, Part A PDF eBook |
Author | Gilbert Hector |
Publisher | Springer Science & Business Media |
Pages | 247 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3322901157 |
Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pioneer work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and IV. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and otners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. ~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and cnaracteristic classes) on the one hand, and the qualitative or geometrie theory on the other. The present volume is the first part of a monograph on geometrie aspects of foliations. Our intention here is to present some fundamental concepts and results as weIl as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that tilis goal has been achieved
Geometry of Foliations
Title | Geometry of Foliations PDF eBook |
Author | Philippe Tondeur |
Publisher | Birkhäuser |
Pages | 308 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3034889143 |
The topics in this survey volume concern research done on the differential geom etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa ration for the statement of Molino's Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes' point of view of foliations as examples of non commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of foliations. Appendix B is a list of proceedings of conferences and symposia devoted partially or entirely to foliations. Appendix C is a bibliography on foliations, which attempts to be a reasonably complete list of papers and preprints on the subject of foliations up to 1995, and contains approximately 2500 titles.
Topology of Foliations: An Introduction
Title | Topology of Foliations: An Introduction PDF eBook |
Author | Ichirō Tamura |
Publisher | American Mathematical Soc. |
Pages | 212 |
Release | 1992 |
Genre | Mathematics |
ISBN | 9780821842003 |
This book provides historical background and a complete overview of the qualitative theory of foliations and differential dynamical systems. Senior mathematics majors and graduate students with background in multivariate calculus, algebraic and differential topology, differential geometry, and linear algebra will find this book an accessible introduction. Upon finishing the book, readers will be prepared to take up research in this area. Readers will appreciate the book for its highly visual presentation of examples in low dimensions. The author focuses particularly on foliations with compact leaves, covering all the important basic results. Specific topics covered include: dynamical systems on the torus and the three-sphere, local and global stability theorems for foliations, the existence of compact leaves on three-spheres, and foliated cobordisms on three-spheres. Also included is a short introduction to the theory of differentiable manifolds.
Introduction to Foliations and Lie Groupoids
Title | Introduction to Foliations and Lie Groupoids PDF eBook |
Author | I. Moerdijk |
Publisher | Cambridge University Press |
Pages | 187 |
Release | 2003-09-18 |
Genre | Mathematics |
ISBN | 1139438980 |
This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. An important feature is the emphasis on the interplay between these concepts: Lie groupoids form an indispensable tool to study the transverse structure of foliations as well as their noncommutative geometry, while the theory of foliations has immediate applications to the Lie theory of groupoids and their infinitesimal algebroids. The book starts with a detailed presentation of the main classical theorems in the theory of foliations then proceeds to Molino's theory, Lie groupoids, constructing the holonomy groupoid of a foliation and finally Lie algebroids. Among other things, the authors discuss to what extent Lie's theory for Lie groups and Lie algebras holds in the more general context of groupoids and algebroids. Based on the authors' extensive teaching experience, this book contains numerous examples and exercises making it ideal for graduate students and their instructors.
Geometry of Foliations
Title | Geometry of Foliations PDF eBook |
Author | Philippe Tondeur |
Publisher | Springer Science & Business Media |
Pages | 330 |
Release | 1997-05 |
Genre | Gardening |
ISBN | 9783764357412 |
Surveys research over the past few years at a level accessible to graduate students and researchers with a background in differential and Riemannian geometry. Among the topics are foliations of codimension one, holonomy, Lie foliations, basic forms, mean curvature, the Hodge theory for the transversal Laplacian, applications of the heat equation method to Riemannian foliations, the spectral theory, Connes' perspective of foliations as examples of non- commutative spaces, and infinite-dimensional examples. The bibliographic appendices list books and surveys on particular aspects of foliations, proceedings of conferences and symposia, all papers on the subject up to 1995, and the numbers of papers published on the subject during the years 1990-95. Annotation copyrighted by Book News, Inc., Portland, OR
Handbook of Geometry and Topology of Singularities V: Foliations
Title | Handbook of Geometry and Topology of Singularities V: Foliations PDF eBook |
Author | Felipe Cano |
Publisher | Springer Nature |
Pages | 531 |
Release | |
Genre | |
ISBN | 3031524810 |